Topology of the flow resulting from vortex breakdown over a delta wing at subsonic speed

  • J. Délery
  • P. Molton
Part of the Acta Mechanica book series (ACTA MECH.SUPP., volume 4)


The breakdown of the primary vortex forming over a 70°-sweep angle delta wing has been investigated at a velocity of 24 m/s, the angle of incidence being 26°. Detailed velocity measurements in the breakdown region have been executed by means of a three component LDV system to allow an accurate definition of the mean flow structure in planes normal to the delta wing upper surface. The topology of these transverse fields is characterized by the existence of limit circles in the pattern of the lines of force of the projected vector field. The obtained results tend to show that, in spite of its spectacular aspect, the breakdown weakly affects the flow structure in the immediate vicinity of the wing surface.


Vortex Centre Breakdown Point Primary Vortex Vortex Breakdown Delta Wing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Wentz, W. H., Kohlmann, D. L.: Vortex breakdown on slender sharp edged wings. AIAA Paper 69–778 (1969).Google Scholar
  2. [2]
    McKernan, J. F., Nelson, R. C.: An investigation of the breakdown of the leading edge vortices on a delta wing at high angle of attack. AIAA Paper 83–2114 (1983).Google Scholar
  3. [3]
    Werlé, H.: Etude phénoménologique de la formation et de l’éclatement des tourbillons au tunnel hydrodynamique TH 2. ONERA RT N 29/1147AY (1985).Google Scholar
  4. [4]
    Payne, F. M., Ng, T. T., Nelson, R. C., Schiff, L. B.: Visualization and flow surveys of the leading edge vortex structure on delta wing planforms. AIAA Paper 86–390 (1986).Google Scholar
  5. [5]
    Agrawal, S., Barnett, R. M., Robinson, B. A.: Investigation of vortex breakdown on a delta wing using Euler and Navier-Stokes equations. AGARD CP-494 (1990).Google Scholar
  6. [6]
    Sarpkaya, T.: On stationary and travelling vortex breakdown. J. Fluid Mech. 45, 545–559 (1971).CrossRefADSGoogle Scholar
  7. [7]
    Faler, J. H., Leibovich, S.: Disrupted states of vortex flow and vortex breakdown. Phys. Fluids 20, 1385–1400 (1977).CrossRefADSGoogle Scholar
  8. [8]
    Escudier, M.: Vortex breakdown: observations and explanations. Prog. Aerospace Sci. 25, 189–229 (1988).CrossRefADSGoogle Scholar
  9. [9]
    Délery, J., Horowitz, E., Leuchter, O., Solignac, J.-L.: Etudes fondamentales sur les écoulements tourbillonnaires Rech. Aérospat. 2, 81–104 (1984).Google Scholar
  10. [10]
    Pagan, D.: Contribution à l’étude expérimentale et théorique de l’éclatement en air incompressible. Ph. D. Dissertation, Université Pierre et Marie Curie, Paris (1989).Google Scholar
  11. [11]
    Afchain, D.: Mise au point du vélocimétre laser tridirectionnel de la soufflerie F2. Etude de la veine vide. ONERA RT 4 /3633 (1988).Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • J. Délery
    • 1
  • P. Molton
    • 1
  1. 1.Aerodynamics Department Office National d’EtudesRecherches Aérospatiales ONERAChâtillonFrance

Personalised recommendations