Numerical simulation of viscous transonic airfoil flows with passive shock control

  • R. Bohning
  • P. Thiede
  • G. Dargel
Part of the Acta Mechanica book series (ACTA MECH.SUPP., volume 4)


An interactive zonal method for the numerical simulation of viscous transonic airfoil flows with passive shock control is presented. The approach is based on a global viscous-inviscid interaction procedure including a local shock boundary layer interaction solution. The predicted shock control effects on the airfoil characteristics result not only in wave and viscous drag reductions but also in a lift increase. The results show that the transonic performance of a typical supercritical airfoil can be substantially improved by a passive shock control device consisting of a perforated surface with a cavity underneath. Furthermore, it is demonstrated that a perforation with inclined holes is more effective than that with normal ones.


Transonic Flow Wave Drag Shock Control Interference Area Ventilation Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bahi, L., Ross, J. M., Nagamatsu, H. T.: Passive shock wave/boundary layer control for transonic airfoil drag reduction. AIAA-Paper 83–0137 (1983).Google Scholar
  2. [2]
    Thiede, P., Krogmann, P., Stanewsky, E.: Active and passive shock/boundary layer interaction control on supercritical airfoils. AGARD-CP-365, Brussels 1984.Google Scholar
  3. [3]
    Krogmann, P., Stanewsky, E., Thiede, P.: Transonic shock/boundary layer interaction control. ICAS-Paper 84–2.3.3, Toulouse 1984.Google Scholar
  4. [4]
    Chen, C. L., Chow, C. Y., van Dalsem, W. R., Holst, T. L.: Computation of viscous transonic flow over porous airfoils. AIAA Paper 87. 0359 (1987).Google Scholar
  5. [5]
    Dargel, G., Thiede, P.: Viscous transonic airfoil flow simulation by an efficient viscous-inviscid interaction method. AIAA Paper 87–0412 (1987).Google Scholar
  6. [6]
    Bohning, R., Zierep, J.: Normal shock–turbulent boundary–layer interaction at a curved wall. AGARD CP No. 291, Computation of Viscous–Inviscid Interactions, 17–1–17–8 (1980).Google Scholar
  7. [7]
    Bohning, R., Zierep, J.: Calculation of 2D turbulent shock/boundary-layer interaction at curved surfaces with suction and blowing. Turbulent Shear Layer/Shock Wave Interactions IUTAM Symposium Palaiseau 1985 (Délery, J., ed.) pp. 105 —112. Berlin Heidelberg New York Tokyo: Springer 1985.Google Scholar
  8. [8]
    Le Balleur, J. C-.: Strong matching method for computing for transonic viscous flows including wakes and separations. Lifting airfoils. La Recherche Aerospatiale 1981— 3, pp. 21–45 (1981).Google Scholar
  9. [9]
    Jakob, H.: Ein Verfahren zur Berechnung der ebenen transsonischen Strömung in Stromlinienkoordinaten. MBB LFK 81117 (IFAS 11), 1984 (not published).Google Scholar
  10. [10]
    Mertens, J., Klevenhusen, K. D., Jakob, H.: Accurate transonic wave drag prediction using simple physical models. AIAA Paper 86–0512 (1986).Google Scholar
  11. [11]
    Thiede, P.: Ein inverses Integralverfahren zur Berechnung abgelöster turbulenter Grenzschichten. DLR-FB 77–16 (1977).Google Scholar
  12. [12]
    Otte, F., Thiede, P.: Berechnung ebener und rotationssymmetrischer kompressibler Grenzschichten auf der Basis von Integralbedingungen. Fortschr.-Ber. VDI-Z, Reihe 7, 33 (1973).Google Scholar
  13. [13]
    Carter, J. E.: A new boundary layer inviscid iteration technique for separated flow. AIAA Paper 79–1450 (1979).Google Scholar
  14. [14]
    Holst, T. L.: Viscous transonic airfoil workshop compendium of results. AIAA Paper 87–1460 (1987).Google Scholar
  15. [15]
    Bohning, R.: Die Wechselwirkung eines senkrechten Verdichtungsstoßes mit einer turbulenten Grenzschicht an einer gekrümmten Wand. Habilitationsschrift, Universität Karlsruhe 1982.Google Scholar
  16. [16]
    Breitling, Th.: Berechnung transsonischer, reibungsbehafteter Kanal-und Profilströmungen mit passiver Beeinflussung. Dissertation, Universität Karlsruhe (TH ) 1989.Google Scholar
  17. [17]
    Beam, R. M., Warming, R. F.: An implicit factored scheme for the compressible Navier-Stokes equations. AIAA J. 16, 393–402 (1978).CrossRefMATHADSGoogle Scholar
  18. [18]
    Chen, C. L.: Computation of transonic flow over porous airfoils. Ph. D. Thesis, University of Colorado 1986.Google Scholar
  19. [19]
    Délery, J., Bur, R., Pot, T.: Basic experiments on passive control of shock-wave/boundary-layer interaction in transonic flow. 4th STAB-Workshop, DLR Göttingen, 1989.Google Scholar
  20. [20]
    Bur, R.: Etude fundamentale sur le contrôle passif de l’interaction onde de choc-couche limite turbulente en écoulement transsonique. Ph. D. Dissertation, Université Pierre et Marie Curie, Paris 1991.Google Scholar
  21. [21]
    Braun, W.: Experimentelle Untersuchung der turbulenten StoB-Grenzschicht-Wechselwirkung mit passiver Beeinflussung. Dissertation, Universität Karlsruhe (TH ) 1990.Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • R. Bohning
    • 1
  • P. Thiede
    • 2
  • G. Dargel
    • 2
  1. 1.Institut für Strömungslehre und StrömungsmaschinenUniversität Karlsruhe (TH)KarlsruheGermany
  2. 2.Deutsche Aerospace Airbus GmbHBremenFederal Republic of Germany

Personalised recommendations