Passive control of shock-boundary layer interaction in transonic axial compressor cascade flow

  • S. Yu
  • G. H. Schnerr
  • U. Dohrmann
  • O. Sadi
Part of the Acta Mechanica book series (ACTA MECH.SUPP., volume 4)


The object of this investigation is the ventilated flow through an axial transonic/supersonic compressor cascade. It is a joint research project between the Chinese Academy of Sciences, Institute of Engineering Thermophysics and the University of Karlsruhe (TH), Institute for Fluid Mechanics and Fluid Machinery. Losses in the cascade flow can be reduced by passive control of the shock-boundary layer interaction. The passive control is realized by a cavity covered with a porous plate which is located at the interference region of the shock at the suction side of the blade. The static pressure gradient along the porous surface initiates a flow through the cavity which smoothes the pressure jump across the shock automatically. Experiments are performed in a cascade wind tunnel of the Chinese Academy of Sciences and in a cascade element being installed in the supersonic wind tunnel of the Institute for Fluid Mechanics and Fluid Machinery. Numerical results are obtained at the University of Karlsruhe by solving the 2-D Reynolds averaged Navier-Stokes equation with an explicit, time-dependent finite volume method. Experimental results in the cascade and in the cascade element yield a relative reduction of the total loss of 14 – 15% and an improvement of the isentropic efficiency of about 2%. In the numerical simulation of stationary viscous flow the total loss reduces by more than 5% and the isentropic efficiency increases by nearly 1%.


Cavity Length Chord Length Loss Coefficient Suction Side Passive Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bölcs, A., Suter, P.: Transsonische Turbomaschinen. Karlsruhe: G. Braun 1986.Google Scholar
  2. [2]
    Schreiber, H. A., Yu, S.: Experiments on strong shock wave turbulent boundary layer interaction in a supersonic compressor cascade. DLR-IB-325–02/89 (1989).Google Scholar
  3. [3]
    Breitling, T.: Berechnung transsonischer reibungsbehafteter Kanal-und Profilströmungen mit passiver Beeinflussung. Dissertation Universität Karlsruhe (TH) 1989.Google Scholar
  4. [4]
    Bohning, R., Zierep, J.: Der senkrechte Verdichtungsstoa an einer gekrümmten Wand unter Einfluß der Reibung. ZAMP 27, 225–240 (1976).CrossRefMATHADSGoogle Scholar
  5. [5]
    Baldwin, B. S., Lomax, H.: Thin layer approximation and algebraic model for separated turbulent flow. AIAA 78–257, AIAA 16th Aerospace Sciences Meeting, Huntsville, Alabama 1978.Google Scholar
  6. [6]
    Stock, H. W, Haase, W.: The determination of turbulent length scales in algebraic turbulence models for attached and slightly separated flows using Navier-Stokes methods. AIAA 87–1302 (1987).Google Scholar
  7. [7]
    Braun, W.: Experimentelle Untersuchungen der turbulenten StoB-Grenzschicht-Wechselwirkung mit passiver Beeinflussung. Dissertation Universität Karlsruhe (TH) 1990.Google Scholar
  8. [8]
    Anderson, W. K., Thomas, J. L., van Leer, B.: Comparison of finite volume flux vector splittings for the Euler equations. AIAA J. 24, 1453–1460 (1986).CrossRefADSGoogle Scholar
  9. [9]
    Baker, T. J., Jameson, A., Schmidt, W.: A family of fast and robust Euler codes. MAE Report 1652 (1984).Google Scholar
  10. [10]
    Yu, S., Li, J. Y., Yu, B., Fan, C. E: Some preliminary experimental results on passive control of shock wave boundary layer interaction in compressor cascades. In: Proceedings of the 1st International Symposium on Experimental and Computational Aerothermodynamics of Internal Flows (Chen, N. X., Jiang, H. D., eds.) pp. 217–219. Beijing: World Publishing Corporation 1990.Google Scholar
  11. [11]
    Schreiber, H. A.: Shock losses in transonic and supersonic compressor cascades. DLR-IB-325–03/89 (1989).Google Scholar
  12. [12]
    Schnerr, G. H., Dohrmann, U., Zierep, J.: Passive Control of the Shock-Boundary Layer Interaction in a Transonic Compressor Cascade. Proceedings of the 2 ISAIF, Prague, July 12–15 (eds. R. Dvorak, J. Kvapilovâ), Society of Czech Mathematicians and Physicists, Prague, pp. 491–498 (1993)Google Scholar
  13. [13]
    Schnerr, G. H., Dohrmann, U., Sadi, O., Zierep, J.: Numerical and experimental investigation of passive control of the shock-boundary layer interaction in a transonic compressor cascade. Proceedings ICFM-II, Beijing, China, July 7–10 (eds. Zhao Dagang, Zhang Zhixin), Peking University Press, Beijing, pp. 504–510 (1993).Google Scholar
  14. [14]
    Yu. S.: Suppression of shock oscillations in a compressor cascade by using passive control. Proceedings of the 2 ISAIF, Prague, July 12–15 (eds. R. Dvorak, J. Kvapilovâ), Society of Czech Mathematicians and Physicists, Prague, pp. 609–611 (1993).Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • S. Yu
    • 1
  • G. H. Schnerr
    • 2
  • U. Dohrmann
    • 2
  • O. Sadi
    • 2
  1. 1.Institute of Engineering ThermophysicsChinese Academy of SciencesBeijingPeople’s Republic of China
  2. 2.Institut für Strömungslehre und StrömungsmaschinenUniversität Karlsruhe (TH)KarlsruheFederal Republic of Germany

Personalised recommendations