Numerical simulation of 3D periodic flow in fluid couplings

  • Andreas Kost
  • N.-K. Mitra
  • M. Fiebig
Part of the Acta Mechanica book series (ACTA MECH.SUPP., volume 4)


Adequate understanding of the flow field in fluid couplings is necessary for the optimized design of such devices. In a fluid coupling torque is transmitted by fluid circulation due to a speed differential between the rotating pump impeller and a matching turbine runner. The structure of the flow field is very complex and detailed studies of the unsteady 3D flow have never been reported. A finite-volume method with non-staggered variable arrangement has been used to solve the unsteady Navier-Stokes equations on boundary-fitted grids and for a rotating frame of reference. The obtained results give insights into the physical process of torque transmission.


Control Volume Axial Velocity Fluid Coupling Pump Impeller Ekman Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Langlois, H. J.: Hydrodynamic adjustable-speed drives. Power Transm. Des. 21 60–62 (1979).Google Scholar
  2. [2]
    Greenspan, H. P.: The theory of rotating fluids, p. 6. Cambridge: Cambridge University Press 1968.MATHGoogle Scholar
  3. [3]
    Dijkstra, D., van Heijst, G. J. F.: The flow between two finite rotating disks enclosed by a cylinder. J. Fluid Mech. 128, 123–154 (1983).MATHADSCrossRefGoogle Scholar
  4. [4]
    Rai, M. M.: Three-dimensional Navier-Stokes simulations of turbine rotor-stator interaction. J. Prop. Power 5, 305–319 (1989).CrossRefGoogle Scholar
  5. [5]
    Kost, A., Bai, L., Mitra, N. K., Fiebig, M.: Calculation procedure for unsteady incompressible 3D flows in arbitrarily shaped domains. In: Notes on numerical fluid mechanics, vol. 35 (Vos, J. B., Rizzi, A., Rhyming, I. L., eds.), pp. 269–278. 9th GAMM-Conference on Numerical Methods in Fluid Mechanics, Lausanne 1991. Braunschweig: Vieweg 1992.Google Scholar
  6. [6]
    Khosla, P. K., Rubin, S. G.: A diagonally dominant second-order accurate implicit scheme. Comp. Fluids 2, 207–209 (1979).CrossRefGoogle Scholar
  7. [7]
    Perié, M.: A finite volume method for the prediction of three-dimensional fluid flow in complex ducts, pp. 58–81. Ph. D. Thesis, University of London 1985.Google Scholar
  8. [8]
    Patankar, S. V.: Numerical heat transfer and fluid flow, pp. 113–138. New York: McGraw-Hill 1980.MATHGoogle Scholar
  9. [9]
    Van Doormaal, J. P., Raithby, G. D.: Enhancement of the SIMPLE method for predicting incompressible fluid flows. Num. Heat Trans. 7, 147–163 (1984).MATHADSGoogle Scholar
  10. [10]
    Rhie, C. M., Chow, W. L.: A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation. AIAA J. 21, 1525–1532 (1983).MATHADSCrossRefGoogle Scholar
  11. [11]
    Stone, H. L.: Iterative solution of implicit approximations of multidimensional partial differential equations. SIAM J. Num. Anal. 5, 530–558 (1968).MATHADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Andreas Kost
    • 1
  • N.-K. Mitra
    • 1
  • M. Fiebig
    • 1
  1. 1.Institut für Thermo- und FluiddynamikRuhr-Universität BochumBochumFederal Republic of Germany

Personalised recommendations