Spoke pattern convection

  • F. H. Busse
Part of the Acta Mechanica book series (ACTA MECH.SUPP., volume 4)


An introduction to spoke pattern convection in a horizontal fluid layer heated from below is given. Spoke pattern convection is an ubiquitous form of turbulent convection in fluids with moderate or large Prandtl numbers. A large scale square structure can often be recognized within which the small scale fluctuating velocity field is organized. Experimental measurements and theoretical considerations are presented and possibilities for future analysis are outlined.


Prandtl Number Rayleigh Number Large Eddy Simulation Thermal Boundary Layer Pattern Convection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Busse, F. H., Whitehead, J. A.: Oscillatory and collective instabilities in large Prandtl number convection. J. Fluid. Mech. 66, 67–79 (1974).ADSCrossRefGoogle Scholar
  2. [2]
    Clever, R. M., Busse, E H.: Three-dimensional knot convection in a layer heated from below. J. Fluid Mech. 198, 345–363 (1989).MATHADSCrossRefGoogle Scholar
  3. [3]
    Busse, E H., Clever, R. M.: Instabilities of convection rolls in a fluid of moderate Prandtl number. J. Fluid Mech. 91, 319–335 (1979).ADSCrossRefGoogle Scholar
  4. [4]
    Schmidt, H., Schumann, U.: Coherent structure of the convective boundary layer derived from large-eddy simulations. J. Fluid Mech. 200, 511–562 (1989).MATHADSCrossRefGoogle Scholar
  5. [5]
    Grötzbach, G.: Direct numerical and large eddy simulation of turbulent channel flows. In: Encyclopeadia of Fluid Mechanics, vol. 6 (Cheremisinoff, N. P., ed.), pp. 1337–1391. Houston: Gulf Publ. Comp. 1987.Google Scholar
  6. [6]
    Homann, F.: Der Einfluß großer Zähigkeit bei der Strömung um den Zylinder und um die Kugel. ZAMM 16, 153–164 (1936).MATHCrossRefGoogle Scholar
  7. [7]
    Roberts, G. O.: Fast viscous Bénard convection. Geophys. Astrophys. Fluid Dyn. 12, 235–272 (1979).MATHADSCrossRefGoogle Scholar
  8. [8]
    Malkus, W. V. R.: The heat transport and spectrum of thermal turbulence. Proc. Roy. Soc. London Ser. A 225, 196–212 (1954).MATHADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • F. H. Busse
    • 1
  1. 1.Institute of PhysicsUniversity of BayreuthBayreuthFederal Republic of Germany

Personalised recommendations