Advertisement

The boundary value problem for low aspect ratio, pointed wings at sonic speed Recent developments in theory

  • S. Turbatu
Part of the Acta Mechanica book series (ACTA MECH.SUPP., volume 4)

Summary

In this paper a review of the recent developments in the theory of a slowly oscillating low aspect ratio, pointed wing at sonic speed is presented, using the concepts of the parabolic method, the equivalence rule and a iteration method to approximately incorporate the thickness effect in the analysis.

Keywords

Transonic Flow Delta Wing Thickness Effect Equivalence Rule Sonic Speed 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Oswatitsch, K., Keune, E: The flow around bodies of revolution at Mach number 1. Proceedings of the conference on high-speed aeronautics, pp. 113–131. Polytechnic Institute of Brooklyn, New York (1955).Google Scholar
  2. [2]
    Hosokawa, I.: A simplified analysis for transonic flows around thin bodies. In: Symposium Transsonicum (Oswatitsch, K. ed.), pp. 184 —199. IUTAM Symposium, Aachen, Germany 1962. Berlin Göttingen Heidelberg: Springer 1964.Google Scholar
  3. [3]
    Teipel, I.: Die instationären Luftkräfte bei der Machzahl 1. Z. Flugwiss. 12, 6–14 (1964).MATHGoogle Scholar
  4. [4]
    Ruo, S. Y., Liu, D. D.: Calculation of stability derivatives for slowly oscillating bodies of revolution at Mach 1. Lockheed Missiles and Space Co. LMSC/HREC D162375 (1971).Google Scholar
  5. [5]
    Zierep, J.: Der Äquivalenzsatz and die parabolische Methode für schallnahe Strömungen. ZAMM 45, 19–27 (1965).MathSciNetCrossRefGoogle Scholar
  6. [6]
    Adams, M. C., Sears, W. R.: Slender-body theory — review and extension. J. Aero. Sci. 20, 85 — 98 (1953).Google Scholar
  7. [7]
    Landahl, M. T.: Unsteady transonic flow. New York: Pergamon Press 1961.Google Scholar
  8. [8]
    Kimble, K. R., Liu, D. D., Ruo, S. Y., Wu, J. M.: Unsteady transonic flow analysis for low aspect ratio, pointed wings. AIAA J. 12, 516–522 (1974).MATHADSCrossRefGoogle Scholar
  9. [9]
    Ruo, S. Y.: Slowly oscillating pointed low aspect ratio wings at sonic speed with thickness effect. ZAMM 54, 119 —121 (1974).Google Scholar
  10. [10]
    Sapunkova, O. M.: Slowly oscillating pointed low aspect ratio wings at sonic speed. Aerodynamica (Transonic Flow), University of Saratov, 52–60 (1981).Google Scholar
  11. [11]
    Liu, D. D., Platzer, M. F., Ruo, S. Y.: Unsteady linearized transonic flow analysis for slender bodies. AIAA J. 15, 966 — 973 (1977).Google Scholar
  12. [12]
    Oswatitsch, K.: Similarity and equivalence in compressible flow. Advances in applied mechanics, Vol. VI, pp. 153–271. New York: Academic Press 1960.Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • S. Turbatu
    • 1
  1. 1.University of BucharestBucharestRomania

Personalised recommendations