Normal shock λ-foot topography at turbulent boundary layer

  • P. Doerffer
Part of the Acta Mechanica book series (ACTA MECH.SUPP., volume 4)


The normal shock λ-foot configuration at turbulent boundary layer has been investigated for M = 1.35 ÷ 1.47 and for Reδ = 5.5 ÷ 15.3 × 104. The flow structure in respect to the shocks’ inclination is discussed It is shown that λ-foot topography within the parameters range contradicts the generally accepted assumption of equal static pressure and flow direction on both sides of a slip line downstream the triple point. A new approach has been proposed which displays a very good agreement with the experimental results.


Mach Number Turbulent Boundary Layer Front Shock Triple Point Main Shock 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Ackeret, J., Feldmann, F., Rott, H.: Untersuchungen an Verdichtungsstößen and Grenzschichten in schnell bewegten Gasen. Bericht No. 10 des Institutes für Aerodynamik, ETH Zürich 1946.Google Scholar
  2. [2]
    Seddon, J.: The flow produced by interaction of a turbulent boundary layer with a normal shock wave of strenght sufficient to cause separation. ARC Ramp; M 3502 (1967).Google Scholar
  3. [3]
    Doerffer, P., Zierep, J.: An experimental investigation of the Reynolds number effect on a normal shock wave — turbulent boundary layer interactions on a curved wall. Acta Mech. 73, 77–93 (1988).CrossRefGoogle Scholar
  4. [4]
    Doerffer, P.: An experimental investigation of the Mach number effect upon a normal shock wave — turbulent boundary layer interaction on a curved wall. Acta Mech. 76, 35–51 (1989).CrossRefGoogle Scholar
  5. [5]
    McGregor, I.: Some calculations of conditions at the intersection of a week shock wave with strong shock. ARC Ramp;M 3728 (1973).Google Scholar
  6. [6]
    Henderson, L. F.: On the confluence of three shock waves in a perfect gas. Aeronaut. Q. 15, 181–197 (1964).Google Scholar
  7. [7]
    Walenta, Z. A.: Microscopic structure of the Mach-type reflexion of the shock wave. Arch. Mech. 32, 819–825 (1980).Google Scholar
  8. [8]
    Walenta, Z. A.: Formation of Mach-type reflection of shock waves. Arch. Mech. 35, 187–196 (1983).Google Scholar
  9. [9]
    Hornung, H. G., Oertel, H., Sandeman, R. J.: Transition to Mach reflexion of shock waves in steady and pseudosteady flow with and without relaxation. J. Fluids Mech. 90, 54–560 (1979).CrossRefGoogle Scholar
  10. [10]
    Abbiss, J. W.: Influence of free-stream Mach number on transonic shock-wave boundary-layer interaction. NLR MP 78013 U, Amsterdam 1978.Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • P. Doerffer
    • 1
  1. 1.Institute of Fluid Flow MachineryPolish Academy of SciencesGdanskPoland

Personalised recommendations