Skip to main content

Multiplicative models for turbulent energy dissipation

  • Chapter
Fluid- and Gasdynamics

Part of the book series: Acta Mechanica ((ACTA MECH.SUPP.,volume 4))

Summary

We consider models for describing the intermittent distribution of the energy dissipation rate per unit mass, ε, in high-Reynolds-number turbulent flows. These models are based on a physical picture in which (in one-dimensional space) an eddy of scale r breaks into b smaller eddies of scale r/b. The energy flux across scales of size r is r , where ε r is the average of ε over a linear interval of size r. This energy flux can be written as the product of factors called multipliers. We discuss some properties of the distribution of multipliers. Using measured multiplier distributions obtained from atmospheric surface layer data on ε, we show that quasi-deterministic models (multiplicative models) can be developed on a rational basis for multipliers with bases b = 2 and 3 (that is, binary and tertiary breakdown processes). This formalism allows a unified understanding of some apparently unrelated previous work, and its simplicity permits the derivation of explicit analytic expressions for quantities such as the probability density function of r , which agree very well with measurements. Other related applications of multiplier distributions are presented. The limitations of this approach are discussed when bases larger than three are invoked.

This is the enlarged version of the text to appear in the Proceedings of the International Congress of Theoretical and Applied Mechanics, Haifa, 1992.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kolmogorov, A. N.: Local structure of turbulence in in an incompressible fluid at very high Reynolds numbers. Dokl. Akad. Nauk SSSR 30, 299–303 (1941).

    ADS  Google Scholar 

  2. Sreenivasan, K. R.: Fractals and multifractals in fluid turbulence. Annu. Rev. Fluid Mech. 23, 539 – 600 (1992).

    Google Scholar 

  3. Meneveau, C., Sreenivasan, K. R.: Simple multifractal cascade model for fully developed turbulence. Phys. Rev. Lett. 59, 1424 –1427 (1987).

    Article  ADS  Google Scholar 

  4. Meneveau, C., Sreenivasan, K. R.: The multifractal nature of energy dissipation. J. Fluid Mech. 224, 429–484 (1991).

    Article  MATH  ADS  Google Scholar 

  5. Chhabra, A. B., Sreenivasan, K. R.: Scale-invariant multiplier distributions in turbulence. Phys. Rev. Lett. 62, 2762 – 2765 (1992).

    Google Scholar 

  6. Mandelbrot, B. B.: Intermittent turbulence in self-similar cascades: Divergence of high moments and dimensions of the carrier. J. Fluid Mech. 62, 331– 358 (1974).

    MATH  Google Scholar 

  7. Schertzer, D., Lovejoy, S.: Nonlinear variability in geophysics. Dordrecht: Kluwer 1991.

    Google Scholar 

  8. Frisch, U., Parisi, G.: On the singularity structure of fully developed turbulence. In: Turbulence and predictability in geophysical fluid dynamics and climate dynamics (Ghil, M., Benzi, R., Parisi, G.), pp. 84–88. Amsterdam: North-Holland 1985; Halsey, T. C., Jensen, M. H., Kadanoff, L. P., Procaccia, I., Shraiman, B. I.: Fractal measures and their singularities: The characterization of strange sets. Phys. Rev. A 33, 1141–1151 (1986).

    Google Scholar 

  9. Kailasnath, P., Sreenivasan, K. R., Stolovitzky, G.: Probability density of velocity increments in turbulent flows. Phys. Rev. Lett. 68, 2766–2769 (1992).

    Article  ADS  Google Scholar 

  10. Kolmogorov, A. N.: Energy dissipation in locally isotropic turbulence. Dokl. Akad. Nauk SSSR 32, 19–21 (1941).

    Google Scholar 

  11. Rey Pastor, J., Pi Calleja, P., Trejo, C.: Analisis matematico, vol I. Kapelusz: Buenos Aires, 1957.

    Google Scholar 

  12. Vicsek, T, Barabâsi, A.-L.: Multi-affine model for the velocity distribution in fully turbulent flows. J. Phys. A, 24, L845 – L851 (1991).

    Article  ADS  Google Scholar 

  13. Kolmogorov, A. N.: A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 13, 82–85 (1962).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Novikov, E. A.: Intermittency and scale similarity in the structure of a turbulent flow. Prikl. Mat. Mekh. 35, 266–277 (1971).

    Google Scholar 

  15. Stolovitzky, G., Kailasnath, P., Sreenivasan, K. R.: Kolmogorov’s refined similarity hypotheses. Phys. Rev. Lett. 69, 1178 –1181 (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag

About this chapter

Cite this chapter

Sreenivasan, K.R., Stolovitzky, G. (1994). Multiplicative models for turbulent energy dissipation. In: Schnerr, G.H., Bohning, R., Frank, W., Bühler, K. (eds) Fluid- and Gasdynamics. Acta Mechanica, vol 4. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9310-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9310-5_13

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82495-5

  • Online ISBN: 978-3-7091-9310-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics