Advertisement

Correlations in homogeneous stratified shear turbulence

  • U. Schumann
Part of the Acta Mechanica book series (ACTA MECH.SUPP., volume 4)

Summary

Based on the budget of kinetic energy and simple estimates to relate dissipation and temperature or concentration fluctuations to shear, stratification, and the vertical velocity fluctuations, a consistent set of equations is deduced to estimate vertical fluxes of momentum and heat or mass. The estimates are designed for strongly sheared, neutral and stratified flows at high Reynolds numbers under approximately homogeneous conditions. The set is closed by using basically two empirical coefficients together with the turbulent Prandtl number and the growth rate of kinetic energy as a function of the gradient Richardson number. The correlations are tested using data from previous laboratory experiments and numerical simulations.

Keywords

Direct Numerical Simulation Richardson Number Inviscid Flow Turbulent Prandtl Number Gradient Richardson Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Hunt, J.C.R., Kaimal, J.C., Gaynor, J.E.: Some observations of turbulence structure in stable layers. Q.J.R. Meteorol. Soc. 111, 793–815 (1985).CrossRefADSGoogle Scholar
  2. [2]
    Lilly, D.K., Waco, D.E., Adelfang, S.I.: Stratospheric mixing estimated from high-altitude turbulence measurements. J. Appl. Meteorol. 13, 488–493 (1974).CrossRefADSGoogle Scholar
  3. [3]
    Osborn, T.R.: Estimates of the rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr. 10, 83–89 (1980).CrossRefADSGoogle Scholar
  4. [4]
    Rohr, J.J., Itsweire, E.C., Helland, K.N., Van Atta, C.W.: Growth and decay of turbulence in a stably stratified shear flow. J. Fluid Mech. 195, 77–111 (1988).CrossRefMATHADSMathSciNetGoogle Scholar
  5. [5]
    Tavoularis, S. Corrsin, S.: Experiments in nearly homogeneous turbulent shear flow with a uniform temperature gradient. Part 1. J. Fluid Mech. 104, 311–347 (1981).CrossRefADSGoogle Scholar
  6. [6]
    Tavoularis, S., Corrsin, S.: Effects of shear on the turbulent diffusivity tensor. Int. J. Heat Mass Transfer 28, 256–276 (1985).CrossRefADSGoogle Scholar
  7. [7]
    Tavoularis, S., Karnik, U.: Further experiments on the evolution of turbulent stresses and scales in uniformly sheared turbulence. J. Fluid Mech. 204, 457–478 (1989).CrossRefADSGoogle Scholar
  8. [8]
    Hunt, J.C.R., Stretch, D.D., Britter, R.E.: Length scales in stably stratified turbulent flows and their use in turbulence models. In: Stably stratified flows and dense gas dispersion (Puttock, J. S., ed.), pp. 285–321. Oxford: Clarendon Press 1988.Google Scholar
  9. [9]
    Kaltenbach, H.-J.: Turbulente Diffusion in einer homogenen Scherströmung mit stabiler Dichterschichtung. Diss. TU München, Report DLR-FB 92–26, p. 142 (1992).Google Scholar
  10. [10]
    Gerz, T., Schumann, U., Elghobashi, S.E.: Direct numerical simulation of stratified homogeneous turbulent shear flow. J. Fluid Mech. 200, 563–584 (1989).CrossRefMATHADSGoogle Scholar
  11. [11]
    Nieuwstadt, E. T. M.: The turbulent structure of the stable, nocturnal boundary layer. J. Atmos. Sci. 41, 2202–2216 (1984).CrossRefADSGoogle Scholar
  12. [12]
    Zierep, J.: Ähnlichkeitsgesetze und Modellregeln der Strömungslehre, p. 138. Karlsruhe: G. Braun, 1972.MATHGoogle Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • U. Schumann
    • 1
  1. 1.Deutsche Forschungsanstalt für Luft- und RaumfahrtInstitut für Physik der AtmosphäreOberpfaffenhofen, Post WeßlingFederal Republic of Germany

Personalised recommendations