Advertisement

On the critical condition for wall turbulence generation

  • M. Nishioka
  • M. Asai
  • S. Furumoto
Part of the Acta Mechanica book series (ACTA MECH.SUPP., volume 4)

Summary

The critical flow condition for self-sustaining wall turbulence and the related minimum Reynolds number are examined on the basis of our previous and new experiments on the subcritical transition in channel and flat-plate flows to obtain a better understanding of the mechanism for wall turbulence generation. It is stressed that energetic hairpin eddies coming from upstream can trigger the subcritical disturbance growth, or their regeneration, in Blasius flow beyond R θ = 110 ~ 130. Downstream, the mean velocity can follow the logarithmic distribution beyond R θ = 210. We also find that the minimum Reynolds number R θ is not much different for the pipe, channel and flat-plate wall flows.

Keywords

Secondary Instability Wall Turbulence Plane Poiseuille Flow Boundary Layer Plate Stagger Cylinder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Preston, J. H.: The minimum Reynolds number for a turbulent boundary layer and the selection of a transition device. J. Fluid Mech. 3, 373–384 (1958).CrossRefMATHADSGoogle Scholar
  2. [2]
    Morkovin, M. V.: Recent insights into instability and transition. AIAA-88–3675.Google Scholar
  3. [3]
    Nishioka, M., Asai, M., Iida, S.: Wall phenomena in the final stage of transition to turbulence. In: Transition and turbulence (Meyer, R. E., ed.), pp. 113–126. New York: Academic Press 1981.Google Scholar
  4. [4]
    Nishioka, M., Iida, S., Ichikawa, Y.: An experimental investigation of the stability of plane Poiseuille flow. J. Fluid Mech. 72, 731–751 (1975).CrossRefADSGoogle Scholar
  5. [5]
    Nishioka, M., Asai, M., Iida, S.: An experimental investigation of the secondary instability. In: Laminar-turbulent transition (Eppler, R., Fasel, H., eds.), pp. 37–46. Berlin Heidelberg New York: Springer 1980.CrossRefGoogle Scholar
  6. [6]
    Nishioka, M., Asai, M.: Evolution of Tollmien-Schlichting waves into wall turbulence. In: Turbulence and chaotic phenomena in fluids (Tatsumi, T., ed.), pp. 87–92. Amsterdam: North-Holland 1984.Google Scholar
  7. [7]
    Herbert, Th.: Secondary instability of boundary layers. Annu. Rev. Fluid Mech. 20, 487–526 (1988).CrossRefADSGoogle Scholar
  8. [8]
    Nishioka, M., Asai, M.: Three-dimensional wave-disturbances in plane Poiseuille flow. In: Laminar-turbulent transition (Kozlov, V. V., ed.), pp. 173–182. Berlin Heidelberg New York: Springer 1985.CrossRefGoogle Scholar
  9. [9]
    Asai, M., Nishioka, M.: Origin of the peak-valley wave structure leading to wall turbulence. J. Fluid Mech. 208, 1–23 (1989).CrossRefMATHADSGoogle Scholar
  10. [10]
    Sandham, N. D., Kleiser, L.: The late stages of transition to turbulence in channel. J. Fluid Mech. 245, 319–348 (1992).CrossRefMATHADSGoogle Scholar
  11. [11]
    Asai, M., Nishioka, M.: Development of wall turbulence in Blasius flow. In: Laminar-turbulent transition (Arnal, D., Michel, R., eds.), pp. 215–224. Berlin Heidelberg New York Tokyo: Springer 1990.Google Scholar
  12. [12]
    Haridari, A. H., Smith, C. R.: see [13].Google Scholar
  13. [13]
    Smith, C. R., Walker, J. D. A., Haridari, A. H., Sobrun, U.: On the dynamics of near-wall turbulence. Phil. Trans. R. Soc. London Ser. A 336, 131–175 (1991).CrossRefMATHADSGoogle Scholar
  14. [14]
    Nishioka, M., Asai, M.: Some observations of the subcritical transition in plane Poiseuille flow. J. Fluid Mech. 150, 441–450 (1985).CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • M. Nishioka
    • 1
  • M. Asai
    • 2
  • S. Furumoto
    • 3
  1. 1.Department of Aerospace EngineeringUniversity of Osaka PrefectureSakai, Osaka 593Japan
  2. 2.Department of Aerospace EngineeringTokyo Metropolitan Institute of TechnologyHino, Tokyo 191Japan
  3. 3.Graduate SchoolUniversity of Osaka PrefectureSakai, Osaka 593Japan

Personalised recommendations