Skip to main content

Prions and molecular chaperones

  • Conference paper

Part of the book series: Archives of Virology ((ARCHIVES SUPPL,volume 7))

Summary

Molecular chaperones are proteins involved in the folding of other proteins. Among these chaperones, some are involved in their own folding (auto-chaperones). A question arises: what is the mechanism of the chaperone folding catalysis? A model for protein folding that uses the thermodynamics of irreversible processes and statistical mechanics to describe the phenomenon is proposed; the analysis presents a clear link between these two aspects. A consequence of this model is the possible existence of misfolded proteins. This point is discussed and some experimental results arguing in this direction detailed. This thermo-kinetic model is applied to protein folding driven by a molecular chaperone. Analysis of folding shows that a misfolded chaperone can induce mis-folding in protein and, in the case of autofolding (auto-chaperone), may lead to new misfolded chaperones. The consequences are explored by computer simulations. They show that such an auto-chaperone could behave as a new kind of informative molecule and replicate a misfolded structure by a process similar to infection. A quantitative model, displaying the epidemiologic characters of prion infections, is derived from this hypothesis. This hypothesis satisfactorily explains the three manifestations (infectious, genetic and sporadic) that are the characteristic features of all prion diseases. Are prions really molecular chaperones required for their own assembly? Analysis of the structure of prions revealed some features shared by true molecular chaperones. This analysis suggests the positions of the mutations likely to lead to the characteristic early onset of encephalopathy. They are in good agreement with experimental results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almeida MR, Longo AI, Sakaki H, Costa PP, Saraiva MJM (1990) Prenatal diagnostic of familial amyloidotic neuropathy. Hum Genet 85: 623–626

    Article  PubMed  CAS  Google Scholar 

  2. Baker D, Sohl J, Agard DA (1992) A protein-folding reaction under kinetic control. Nature 356: 263–265

    Article  PubMed  CAS  Google Scholar 

  3. Bjorkman PJ, Saper MA, Samraoui B, Bennett WS, Strominger JL, Wiley DC (1987) Structure of the human class I histocompatibility antigen, HLA-A2. Nature 329: 506–512

    Article  PubMed  CAS  Google Scholar 

  4. Brooks C, Karplus M, Pettitt M (1988) Proteins: a theoretical perspective of dynamics, structure, and thermodynamics. Wiley, New York

    Google Scholar 

  5. Buchner J, Schmidt M, Fuchs M, Jaenicke R, Rudolph R, Schmid FX, Kiefhaber T (1991) GroE facilitates refolding of citrate synthase by suppressing aggregation. Biochemistry 30: 1586–1591

    Article  PubMed  CAS  Google Scholar 

  6. Büeler H, Fischer M, Lang Y, Bluethmann H, Lipp H-P, DeArmond SJ, Prusiner SB, Aguet M, Weissmann C (1992) Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature 356: 577–582

    Article  PubMed  Google Scholar 

  7. Bycroft M, Matouschek A, Kellis JT, Serrano L, Fersht AR (1990) Detection and characterization of a folding intermediate in barnase by RMN. Nature 346: 488–490

    Article  PubMed  CAS  Google Scholar 

  8. Carlson GA, Hsiao K, Oesch B, Westaway D, Prusiner SB (1991) Genetics of prion infections. Trends Genet 7: 61–65

    PubMed  CAS  Google Scholar 

  9. Cheng MY, Hartl F-U, Horwich AI (1990) The mitochondrial chaperonin hsp60 is required for its own assembly. Nature 348: 455–458

    Article  PubMed  CAS  Google Scholar 

  10. Chou PY, Fasman G (1974) Conformational parameters for amino acids in helical, 13-sheet, and random coil regions calculated from proteins. Biochemistry 13: 211–245

    Article  PubMed  CAS  Google Scholar 

  11. Degen E, Williams D (1991) Participation of a novel 88-kD protein in the biogenesis of murine Class I histocompatibility molecules. J Cell Biol 112: 1099–1115

    Article  PubMed  CAS  Google Scholar 

  12. Eisenberg D, Weiss RM, Terwilliger TC (1982) The helical hydrophobic moment a measure of the amphilicity of a helix. Nature 299: 371–374

    Article  PubMed  CAS  Google Scholar 

  13. Elis RJ (1987) Proteins as molecular chaperones. Nature 328: 378–379

    Article  Google Scholar 

  14. Flaherty KM, DeLuca-Flaherty C, McKay DB (1990) Three-dimensional structure of the ATPase fragment of a 70K heat-shock cognate protein. Nature 346: 623–628

    Article  PubMed  CAS  Google Scholar 

  15. Gamier J, Osguthorpe DJ, Robson B (1978) Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J Mol Biol 120: 97–120

    Article  Google Scholar 

  16. Gething M-J, Sambrook J (1992) Protein folding in the cell. Nature 355: 33–45

    Article  PubMed  CAS  Google Scholar 

  17. Georgopoulos C (1992) The emergence of the chaperone machines. Trends Biochem Sci 17: 295–299

    Article  PubMed  CAS  Google Scholar 

  18. Ghelis C, Yon J (1982) Protein folding. Academic Press, New York

    Google Scholar 

  19. Gibrat JF, Gamier J, Robson B (1987) Further develoments of protein secondary structure prediction using information theory. New parameters and consideration of residue pairs. J Mol Biol 198: 425–443

    Google Scholar 

  20. Grateau G (1992) Les amylose héréditaires. Medecine/Sciences 6: 524–531

    Google Scholar 

  21. Jou D, Llebot JE (1991) Introduction a la thermodynamique des processus biologiques. Techniques & Documentation-Lavoisier, Paris

    Google Scholar 

  22. Katchalsky A, Curran PF (1965) Nonequilibrium thermodynamics in biophysics. Harvard University Press, Cambridge Massachussets

    Google Scholar 

  23. Kim PS, Baldwin RL (1990) Intermediates in the folding reactions of small proteins. Annu Rev Biochem 59: 631–660

    Article  PubMed  CAS  Google Scholar 

  24. Landry SJ, Gierasch LM (1991) The chaperonin GroEL binds a polypeptide in an alpha-helical conformation. Biochemistry 307: 359–7362

    Google Scholar 

  25. Landry SJ, Jordan R, McMachen R, Gierash L (1992) Different conformation for the same polypeptide bound the chaperone DnaK and GroEL. Nature 355: 455–457

    Article  PubMed  CAS  Google Scholar 

  26. Liautard JP (1990) A thermo-kinetic model for protein folding. CR Acad Sci 311: 385–389

    CAS  Google Scholar 

  27. Liautard JP (1991) Are prions misfolded molecular chaperones? FEBS Lett 294: 155–157

    Article  PubMed  CAS  Google Scholar 

  28. Liautard JP (1991) Are prions misfolded molecular chaperones? FEBS Lett 294: 155–157

    Article  PubMed  CAS  Google Scholar 

  29. Matthews RC (1991) The mechanism of protein folding. Curr Opin Struct Biol 1: 28–35

    Article  CAS  Google Scholar 

  30. Maury CPJ (1990) β-microglobulin amyloidosis. Rheumatol Int 10: 1–8

    Article  PubMed  CAS  Google Scholar 

  31. McLachlan AD (1976) Periodic fearures in the amino acid sequence of nematode myosin rod. J Mol Biol 103: 271–298

    Article  PubMed  CAS  Google Scholar 

  32. Osterman J, Horwich AL, Neupert W, Hartl F-U (1989) Protein folding in mitochondria requires complex formation with hsp60 and ATP hydrolysis. Nature 341: 125–130

    Article  Google Scholar 

  33. Prigogine I (1968) Introduction à la thermodynamique des processus irreversibles. Dunod, Paris

    Google Scholar 

  34. Prusiner SB, Groth DF, Bolton DC, Kent SB, Hood LE (1984) Purification and structural studies of a major scrapie prion protein. Cell 38: 127–134

    Article  PubMed  CAS  Google Scholar 

  35. Prusiner SB, Scott M, Foster D, Pan KM, Groth D, Mirenda C, Torchia M, Yang SL, Serban D, Carlson GA, Hoppe PC, Westaway D, DeArmond SJ (1990) Transgenic studies implicate interactions between homologous PrP isoforms in scrapie prion replication. Cell 63: 673–686

    Article  PubMed  CAS  Google Scholar 

  36. Ptitsyn OB, Pain RH, Semisotnov GV, Zerovnik E, Razguliaev OI (1990) Evidence for molten-globule state as a general intermediate in protein folding. FEBS Lett 262: 20–24

    Article  PubMed  CAS  Google Scholar 

  37. Rippmann F, Taylor WR, Rothbard JB, Green M (1991) A hypothetical model for the peptide binding domain of hsp70 based on the peptide binding domain of HLA. EMBO J 10: 1053–1059

    PubMed  CAS  Google Scholar 

  38. Schmid FX (1991) Catalysis and assistance of protein folding. Curr Opin Struct Biol 1: 36–41

    Article  CAS  Google Scholar 

  39. Stahl N, Borchelt DR, Hsiao K, Prusiner S (1987) Scrapie prion protein contain a phosphatidylinositol glycopipid. Cell 51: 229–240

    Article  PubMed  CAS  Google Scholar 

  40. Sugawara T, Kuwajima K, Sugai S (1991) Folding of staphylococcal nuclease A studied by equilibrium and kinetic circular dichroism spectra. Biochemistry 30: 2698–2706

    Article  PubMed  CAS  Google Scholar 

  41. Vitanen PV, Lubben TH, Goloubinoff P, O’Keefe PO, Lorimer GH (1990) Chaperonin-facilited refolding of ribulose-bisphosphate carboxylase and ATP hydrolysis by chaperonin 60 ( GroEL) are K+-dependent. Biochemistry 29: 5665–5671

    Google Scholar 

  42. Weissmann H. (1991) A “unified theory” of prion propagation. Nature 352: 679–683

    Article  PubMed  CAS  Google Scholar 

  43. Wiech H, Buchner J, Zimmermann R, Jakob U (1992) Hsp90 chaperones protein folding in vitro. Nature 358: 169–170

    Article  PubMed  CAS  Google Scholar 

  44. Zimm BH, Bragg JK (1959) Theory of the phase transition between helix and random coil in polypeptide chains. J Chem Phys 31: 526–532

    Article  CAS  Google Scholar 

  45. Zhu X, Ohta Y, Jordan F, Inouye M (1989) Pro-sequence of subtilisin can guide the refolding of denatured subtilisin in an intermolecular process. Nature 339: 483–484

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag

About this paper

Cite this paper

Liautard, JP. (1993). Prions and molecular chaperones. In: Kaaden, OR., Eichhorn, W., Czerny, CP. (eds) Unconventional Agents and Unclassified Viruses. Archives of Virology, vol 7. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9300-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9300-6_18

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82480-1

  • Online ISBN: 978-3-7091-9300-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics