African swine fever virus genome content and variability

  • L. K. Dixon
  • S. A. Baylis
  • S. Vydelingum
  • S. R. F. Twigg
  • J. M. Hammond
  • P. M. Hingamp
  • C. Bristow
  • P. J. Wilkinson
  • G. L. Smith
Part of the Archives of Virology book series (ARCHIVES SUPPL, volume 7)


A 55 kilobase pair (kb) region from the right end of the virulent African swine fever virus isolate, Malawi LIL20/1, has been sequenced. The 68 major open reading frames (ORFs) encoded are generally closely spaced and read from both DNA strands across the complete sequence. Comparison of the amino acid sequences of predicted ORFs with sequence databases identified 15 ORFs which encode proteins that are similar to proteins of known function. Two ORFs are homologous to copies of multigene family 360 (MGF360) and one ORF is homologous to copies of multigene family 110 (MGF110). Both of these multigene families have been described previously [6, 31].


Vaccinia Virus Identical Amino Acid Multigene Family African Swine Fever African Swine Fever Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aguero M, Blasco R, Wilkinson PJ, Vinuela E (1990) Analysis of naturally occurring deletion variants of African Swine fever virus: Multigene family 110 is not essential for infectivity or virulence in pigs. Virology 176: 195–204PubMedCrossRefGoogle Scholar
  2. 2.
    Ahn BY, Jones EV, Moss B (1990) Identification of rpo 30, a vaccinia virus RNA polymerase gene with structural similarity to a eucaryotic transcription elongation factor. Mol Cell Biol 10: 5433–5441PubMedGoogle Scholar
  3. 3.
    Alcami A, Smith GL (1992) A soluble receptor for interleukin-113 encoded by vaccinia virus: A novel mechanism of virus modulation of the host response to infection. Cell 71: 153–167PubMedCrossRefGoogle Scholar
  4. 4.
    Alcaraz C, Alvarez A, Escribano JM (1992) Flow cytometric analysis of African swine fever virus induced plasma membrane proteins and their humoral immune response in infected pigs. Virology 189: 266–273PubMedCrossRefGoogle Scholar
  5. 5.
    Almazân F, Rodriguez JM, Andrés G, Pérez R, Vinuela E, Rodriguez JF (1992) Transcriptional analysis of multigene family 110 of African swine fever virus. J Virol 66: 6655–6667PubMedGoogle Scholar
  6. 6.
    Almendral JM, Blasco R, Vinuela E (1990) Multigene families in African swine fever virus DNA. Family 110. J Virol 64: 2064–2072PubMedGoogle Scholar
  7. 7.
    Baroudy BM, Venkatesan S, Moss B (1982) Incompletely base-paired flip-flop terminal loops link the two DNA strands of the vaccinia virus genome into one uninterrupted polynucleotide chain. Cell 28: 315–324PubMedCrossRefGoogle Scholar
  8. 8.
    Baylis SA, Dixon LK, Vydelingum S, Smith GL (1992) African swine fever encodes a gene with extensive homology to type II topoisomerases. J Mol Bio1228: 1003–1010Google Scholar
  9. 9.
    Blasco R, Aguero M, Almendral JM, Vinuela E (1989a) Variable and constant regions in African swine fever virus DNA. Virology 168: 330–338PubMedCrossRefGoogle Scholar
  10. 10.
    Blasco R, De La Vega I, Almazan F, Aguero M, Vinuela E (1989b) Genetic variation of African swine fever; variable regions near the ends of the viral DNA. Virology 173: 251–257PubMedCrossRefGoogle Scholar
  11. 11.
    Botija CS (1963) Reservours of ASFV: a study of ASFV in arthropods by means of the haemadsorbtion test. Bull Off Int Epiz 60: 895–899Google Scholar
  12. 12.
    Boursnell M, Shaw K, Yanez RJ, Vinuela E, Dixon L (1991) The sequences of the ribonucleotide reductase genes from African swine fever virus show considerable homology with those of the orthopoxvirus, vaccinia virus. Virology 184: 411–416PubMedCrossRefGoogle Scholar
  13. 13.
    Brown F (1986) The classification and nonenclature of viruses; Summary of results of meetings of the International Committee on taxonomy of viruses, Sendai, September 1984. Intervirology 25: 141–143CrossRefGoogle Scholar
  14. 14.
    Broyles SS, Fesler BS (1990) Vaccinia virus gene encoding a component of the viral early transcription factor. J Virol 64: 1523–1529PubMedGoogle Scholar
  15. 15.
    Broyles SS, Moss B (1987) Identification of the vaccinia virus gene encoding nucleoside triphosphate phosphohydrolase I, a DNA-dependent ATPase. J Virol 61: 1738–1742PubMedGoogle Scholar
  16. 16.
    Camacho A, Vinuela E (1991) Protein P22 of African swine fever virus, an early structural protein that is incorporated into the membrane of infected cells. Virology 181: 251–257PubMedCrossRefGoogle Scholar
  17. 17.
    Chou J, Roizman B (1990) The herpes simplex virus I gene for ICP 34.5, which maps in inverted repeats, is conserved in several limited-passage isolates but not in strain 17 syn +. J Virol 64: 1014–1020PubMedGoogle Scholar
  18. 18.
    Collins JF, Coulson AFW (1987) Molecular sequence comparison and alignment. In: Bishop M, Rawlings C (eds) Nucleic acid and protein sequence analysis: a practical approach. I.R.L. Press, Oxford, pp 323–358Google Scholar
  19. 19.
    Costa JV (1990) African swine fever virus. In: Darai G (ed) Molecular biology of iridoviruses. Kluwer Academic Publishers, Boston, pp 267–270Google Scholar
  20. 20.
    Devereux J, Haeberli P, Smithies (1984) A comprehensive set of sequence analysis programmes for the Vax. Anal Biochem 129: 216–223Google Scholar
  21. 21.
    Dixon LK (1988) Molecular cloning and restriction enzyme mapping of an African swine fever virus isolate from Malawi. J Gen Virol 69: 1683–1694PubMedCrossRefGoogle Scholar
  22. 22.
    Dixon LK, Bristow C, Wilkinson PJ, Sumption KJ (1990b) Identification of a variable region of the African swine fever virus genome which has undergone separate DNA rearrangements leading to expansion of minisatellite like sequences. J Mol Biol 216: 677–688PubMedCrossRefGoogle Scholar
  23. 23.
    Dixon LK, Wilkinson PJ (1988) Genetic diversity of African swine fever virus isolates from soft ticks ( Ornithodoros moubata) inhabiting warthog burrows in Zambia. J Gen Virol 69: 2981–2993PubMedCrossRefGoogle Scholar
  24. 24.
    Dixon LK, Wilkinson PJ, Sumption PJ, Ekue F (1990a) Diversity of the African swine fever virus genome. In: Darai G (ed) Molecular biology of iridoviruses. Kluwer Academic Publishers, Boston, pp 271–295CrossRefGoogle Scholar
  25. 25.
    Esteves A, Marques ML, Costa JV (1986) Two dimensional analysis of African swine fever virus and proteins induced in infected cells. Virology 152: 192–206PubMedCrossRefGoogle Scholar
  26. 26.
    Garcia-Beato R, Freye JMP, Lopez-Otin C, Blasco R, Vinuela E, Salas M (1992b) A gene homologous to topoisomerase II in African swine fever virus. Virology 188: 938–947PubMedCrossRefGoogle Scholar
  27. 27.
    Garcia-Beato R, Salas ML, Vinuela E, Salas J (1992a) Role of the host cell nucleus in the replication of African swine fever virus DNA. Virology 188: 637–649PubMedCrossRefGoogle Scholar
  28. 28.
    Gershon PD, Moss B (1990) Early transcription factor subunits are encoded by vaccinia virus late genes. Proc Natl Acad Sci USA 87: 4401–4405PubMedCrossRefGoogle Scholar
  29. 29.
    Geshelin P, Berns KI (1974) Characterization and localization of the naturally occurring cross-links in vaccinia virus DNA. J Mol Biol 88: 785–796PubMedCrossRefGoogle Scholar
  30. 30.
    Goebel SJ, Johnson GP, Perkins ME, David SW, Winslow JP, Paoletti E (1990) The complete DNA sequence of vaccinia virus. Virology 188: 637–649Google Scholar
  31. 31.
    Gonzalez A, Calvo V, Almazan F, Almendral JM, Ramirez JC, De La Vega I, Blasco R, Vinuela E (1990) Multigene families in African swine fever: family 360. J Virol 64: 2073–2081PubMedGoogle Scholar
  32. 32.
    Gonzalez A, Talavera A, Almendral JM, Vinuela E (1986) Hairpin loop structure of African swine fever virus DNA. Nucleic Acids Res 14: 6835–6844PubMedCrossRefGoogle Scholar
  33. 33.
    Goorha R, Granoff A (1979) Icosahedral cytoplasmic deoxyviruses. Newly characterised vertebrate viruses. Comp Virol 14: 367–369Google Scholar
  34. 34.
    Hammond JM, Kerr SM, Smith GL, Dixon LK (1992) An African swine fever virus gene with homology to DNA ligases. Nucleic Acids Res 20: 2667–2671PubMedCrossRefGoogle Scholar
  35. 35.
    Hingamp PM, Arnold JE, Mayer RJ, Dixon LK (1992) A ubiquitin conjugating enzyme encoded by African swine fever virus. EMBO J 11: 361–366PubMedGoogle Scholar
  36. 36.
    Howard ST, Chan YS, Smith GL (1991) Vaccinia virus homologues of the Shope fibroma virus inverted terminal repeat proteins and a discontinuous ORF related to the tumour necrosis factor receptor family. Virology 180: 633–647PubMedCrossRefGoogle Scholar
  37. 37.
    Kahn JS, Esteban M (1990) Identification of the point mutations in two vaccinia virus nucleoside triphosphate phosphohydrolase 1 temperature sensitive mutants and role of this DNA-dependent ATPase enzyme in virus gene expression. Virology 174: 459–471PubMedCrossRefGoogle Scholar
  38. 38.
    Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157: 105–132PubMedCrossRefGoogle Scholar
  39. 39.
    Law KM, Smith GL (1992) A vaccinia serine protease inhibitor which prevents virus induced cell fusion. J Gen Virol 73: 549–557PubMedCrossRefGoogle Scholar
  40. 40.
    Lipman DJ, Pearson WR (1985) Rapid and sensitive protein similarity searches. Science 227: 1435–1441PubMedCrossRefGoogle Scholar
  41. 41.
    Lord K, Hoffman-Lieberman B, Lieberman D (1990) Sequence of MyD116 cDNA: A novel myeloid differentiation primary response gene induced by 1L6. Nucleic Acids Res 18: 28232CrossRefGoogle Scholar
  42. 42.
    Manso Ribeiro J, Rosa Azevedo JA, Texeira MJO, Braco Forte MC, Rodrigues Ribero AM, Oliveira E, Noronha F, Grave Pereira C, Dias Vigaro J (1958) Peste porcine provoquee par une souche different ( Souche L) de la souche classique. Bull Off Int Epiz 50: 516–534Google Scholar
  43. 43.
    Matthews REF (1982) Classification and nomenclature of viruses. Intervirology 17: 1–99CrossRefGoogle Scholar
  44. 44.
    McGeoch DJ (1990) Protein sequence comparisons show that the “pseudoproteases” encoded by Poxviruses and certain retroviruses belong to the deoxyuridine triphosphatase family. Nucleic Acids Res 18: 4105–4110PubMedCrossRefGoogle Scholar
  45. 45.
    McGeoch D, Barnett B (1991) Neurovirulence factor. Nature 353: 609PubMedCrossRefGoogle Scholar
  46. 46.
    McVicar JW (1984) Quantitative aspects of the transmission of ASF. Am J Vet Res 45: 1535–1541PubMedGoogle Scholar
  47. 47.
    Mebus CA, Daidiri AH (1980) Western hemisphere isolates of ASFV-asymptomatic carriers and resistance to challenge inoculation. Am J Vet Res 41: 1867–1869PubMedGoogle Scholar
  48. 48.
    Montgomery RE (1921) On a form of swine fever occurring in British East Africa (Kenya colony). J Comp Pathol 34: 159–191, 243–262Google Scholar
  49. 49.
    Moss B (1990) Regulation of vaccinia virus transcription. Annu Rev Biochem 59: 661–688PubMedCrossRefGoogle Scholar
  50. 50.
    Pacha RF, Meis R, Condit RC (1990) Structure and expression of the vaccinia virus gene which prevents virus induced breakdown of RNA. J Virol 64: 3853–3863PubMedGoogle Scholar
  51. 51.
    Plowright W, Parker J, Peirce MA (1969a) African swine fever in ticks ( Ornithodoros moubata Murray) collected from animal burrows in Tanzania. Nature 221: 1071–1073PubMedCrossRefGoogle Scholar
  52. 52.
    Ray CA, Black RA, Kronheim SR, Greenstreet TA, Sleath PR, Salvesen GS, Pickup DJ (1992) Viral inhibition of inflammation: Cowpox virus encodes an inhibitor of the interleukin-1 beta converting enzyme. Cell 69: 597–604PubMedCrossRefGoogle Scholar
  53. 53.
    Rodriguez JF, Kahn JS, Esteban M (1986) Molecular cloning, encoding sequence and expression of vaccinia virus nucleic acid-dependent nucleotide triphosphatase gene. Proc Natl Acad Sci USA 83: 9566–9570PubMedCrossRefGoogle Scholar
  54. 54.
    Rodriguez JM, Salas ML, Vinuela E (1992) Genes homologous to ubiquitin conjugating proteins and eukaryotic transcription factor SII in African swine fever. Virology 186: 40–52PubMedCrossRefGoogle Scholar
  55. 55.
    Santaren JF, Vinuela E (1986) African swine fever virus induced polypeptides Virus Res 5: 391–405PubMedCrossRefGoogle Scholar
  56. 56.
    Smith CA, Davis T, Anderson D, Solan L, Beckmann MP, Jerzy R, Dower SK, Cosman D, Goodwin RG (1990) A receptor for tumour necrosis factor defines an unusual family of cellular and viral proteins. Science 248: 1019–1023PubMedCrossRefGoogle Scholar
  57. 57.
    Smith GL, Chan YS, Howard ST (1991) Nucleotide sequence of 42 kbp of vaccinia virus strain WR from near the right inverted terminal repeat. J Gen Virol 72: 1349–1374PubMedCrossRefGoogle Scholar
  58. 58.
    Smith GL, Chan YS (1991) Two vaccinia virus proteins structurally related to the interleukin-1 receptor and the immunoglobulin superfamily. J Gen Virol 72: 511–518PubMedCrossRefGoogle Scholar
  59. 59.
    Smith GL, Howard ST, Chan YS (1989) Vaccinia virus encodes a family of genes with homology to serine proteinase inhibitors. J Gen Virol 70: 2333–2343PubMedCrossRefGoogle Scholar
  60. 60.
    Staden R (1982) Automation of computer handling of gel reading data produced by the shotgun method of DNA sequencing. Nucleic Acids Res 10: 4731–4751PubMedCrossRefGoogle Scholar
  61. 61.
    Staden R (1990) An improved sequence handling package that runs on the Apple Macintosh computer. Appl Biosci 6: 387–393Google Scholar
  62. 62.
    Sumption KJ, Hutchings GH, Wilkinson PJ, Dixon LK (1990) Variable regions on the genome of Malawi isolates of African swine fever virus. J Gen Virol 71: 2331–2340PubMedCrossRefGoogle Scholar
  63. 63.
    Thomson GR (1985) The epidermiology of African swine fever: the role of free-living hosts in Africa. Onderstepoort J Vet Res 52: 201–209PubMedGoogle Scholar
  64. 64.
    Urzainqui A, Tabares E, Carrascosa L (1987) Proteins synthesised in African swine fever infected cells analysed by two dimensional gel electrophoresis. Virology 160: 286–291PubMedCrossRefGoogle Scholar
  65. 65.
    Von Heijne G (1986) A new method for predicting signal cleavage sites. Nucleic Acids Res 14: 4683–4690CrossRefGoogle Scholar
  66. 66.
    Vinuela E (1985) African swine fever virus. Curr Top Microbiol Immunol 116: 151–170PubMedCrossRefGoogle Scholar
  67. 67.
    Vinuela E (1987) African swine fever virus. In: Becker Y (ed) Developments in veterinary virology. Martinus Nijhoff, The Hague, pp 31–49Google Scholar
  68. 68.
    Wesley RD, Tuthill AE (1984) Genome relatedness among African swine fever virus field isolates by restriction endonuclease analysis. Prey Vet Med 2: 53–62CrossRefGoogle Scholar
  69. 69.
    Wilkinson PJ (1981) African swine fever. In: Gibbs EPJ (ed) Virus diseases of food animals. A world geography of epidemiology and control, vol 2. Disease monographs. Academic Press, London, pp 767–786Google Scholar
  70. 70.
    Wilkinson PJ, Wardley RC, Williams SM (1981) In: Wilkinson PJ (ed) African swine fever. EEC Publication Eur 84: 66 En, pp 74–84Google Scholar
  71. 71.
    Wilkinson PJ (1989) African swine fever virus family. In: Pensaert MB (ed) Virus infections of porcines. Elsevier Publications BV, New York, pp 15–36Google Scholar
  72. 72.
    Zhou J, Sun XY, Fernando GJP, Frazer IH (1992) The vaccinia virus K2L gene encodes a serine protease inhibitor which inhibits cell fusion. Virology 189: 678–686PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • L. K. Dixon
    • 1
    • 3
  • S. A. Baylis
    • 2
  • S. Vydelingum
    • 1
  • S. R. F. Twigg
    • 2
  • J. M. Hammond
    • 1
  • P. M. Hingamp
    • 1
  • C. Bristow
    • 1
  • P. J. Wilkinson
    • 1
  • G. L. Smith
    • 2
  1. 1.AFRC Institute for Animal HealthPirbright, WokingUK
  2. 2.Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
  3. 3.AFRC Institute for Animal HealthPirbright, Woking, SurreyUK

Personalised recommendations