Skip to main content

Virus-host interactions in African swine fever: the attachment to cellular receptors

  • Conference paper
Unconventional Agents and Unclassified Viruses

Part of the book series: Archives of Virology ((ARCHIVES SUPPL,volume 7))

Summary

Biochemical and morphological techniques have shown that African swine fever virus (ASFV) enters susceptible cells by a mechanism of receptor-mediated endocytosis. The virus binds to a specific, saturable site in the cell and this interaction is required for a productive infection. A structural ASFV protein of 12 kDa (p12) has been identified to be involved in the recognition of the cellular receptor, on the basis of the specific binding of the polypeptide to sensitive Vero cells. Protein p12 is externally located in the virus particle, forming disulfide-linked dimers with an apparent molecular mass of 17 kDa. The gene has been mapped within the central region of the BA71V strain genome. Sequencing analysis has shown the existence of an open reading frame encoding a polypeptide of 61 amino acids characterized by the presence of a putative transmembrane domain, and a cysteine rich region in the C-terminal part which may be responsible for the dimerization of the protein. Transcripts of the p12 gene were only synthesized during the late phase of the infectious cycle. No posttranslational modifications of the polypeptide, such as glycosylation, phosphorylation or fatty acid acylation, have been found. The comparison of the amino acid sequence of protein p12 from 11 different virus strains has revealed a high degree of conservation of the polypeptide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alcami A, Angulo A, Lopez-Otin C, Munoz M, Freije JMP, Carrascosa AL, Vinuela E (1992) Amino acid sequence and structural properties of protein p12, an African swine fever virus attachment protein. J Virol 66: 3860–3868

    PubMed  CAS  Google Scholar 

  2. Alcamî A, Carrascosa AL, Vinuela E (1989) Saturable binding sites mediate the entry of African swine fever virus into Vero cells. Virology 168: 393–398

    Article  PubMed  Google Scholar 

  3. Alcamï A, Carrascosa AL, Vinuela E (1989) The entry of African swine fever virus into Vero cells. Virology 171: 68–75

    Article  PubMed  Google Scholar 

  4. Alcamî A, Carrascosa AL, Vinuela E (1990) Interaction of African swine fever virus with macrophages. Virus Res 17: 93–104

    Article  PubMed  Google Scholar 

  5. Alcamî A, Vinuela E (1991) Fc receptors do not mediate African swine fever virus replication in macrophages. Virology 181: 756–759

    Article  PubMed  Google Scholar 

  6. Almazân F, Rodriguez JM, Angulo A, Vinuela E, Rodriguez JF (1993) Transcriptional mapping of a late gene coding for the p12 attachment protein of African swine fever virus. J Virol 67: 553–556

    PubMed  Google Scholar 

  7. Almazân F, Rodriguez JM, Andrés G, Pérez R, Vinuela E, Rodriguez JF (1992) Transcriptional analysis of the multigene family 110 of African swine fever virus. J Virol 66: 6655–6667

    PubMed  Google Scholar 

  8. Almendral JM, Blasco R, Ley V, Beloso A, Talavera A, Vinuela E (1984) Restriction site map of African swine fever virus DNA. Virology 133: 358–270

    Article  Google Scholar 

  9. Angulo A, Vinuela E, Alcamî A (1992) Comparison of the sequence of the gene encoding African swine fever virus attachment protein p12 from field virus isolates and viruses passaged in tissue culture. J Virol 66: 3869–3872

    PubMed  CAS  Google Scholar 

  10. Blasco R, Agüero M, Almendral JM, Vinuela E (1989) Variable and constant regions in African swine fever virus DNA. Virology 168: 330–338

    Article  PubMed  CAS  Google Scholar 

  11. Brown M, Faulkner P (1977) A plaque assay for nuclear polyhedrosis using a solid overlay. J Gen Virol 36: 361–364

    Article  Google Scholar 

  12. Carrascosa AL, del Val M, Santarén JF, Vinuela E (1985) Purification and properties of African swine fever virus. J Virol 54: 337–344

    PubMed  CAS  Google Scholar 

  13. Carrascosa AL, Sastre I, Gonzalez P, Vinuela E (1993) Localization of the African swine fever virus attachment protein p12 in the virus particle by immunoelectron microscopy. Virology 193: 460–465

    Article  PubMed  CAS  Google Scholar 

  14. Carrascosa AL, Sastre I, Vinuela E (1991) African swine fever virus attachment protein. J Virol 65: 2283–2289

    PubMed  CAS  Google Scholar 

  15. Carrascosa JL, Carazo JM, Carrascosa AL, Garcia N, Santisteban A, Vinuela, E (1984) General morphology and capsid fine structure of African swine fever virus particles. Virology 132: 160–172

    Article  PubMed  CAS  Google Scholar 

  16. Costa J (1990) African swine fever virus. In: Darai G (ed) Molecular biology of iridoviruses. Kluwer Academic Publishers, Boston, pp 247–270

    Chapter  Google Scholar 

  17. De Boer CJ (1967) Studies to determine neutralizing antibody in sera from animals recovered from African swine fever and laboratory animals inoculated with African virus with adjuvants. Arch Ges Virusforsch 20: 164–179

    Article  PubMed  Google Scholar 

  18. Del Val M, Carrascosa JL, Vinuela E (1986) Glycosylated components of African swine fever virus. Virology 152: 39–49

    Article  PubMed  Google Scholar 

  19. Dixon LK, Wilkinson PJ, Sumption KJ, Ekue F (1990) Diversity of the African swine fever virus genome. In: Darai G (ed) Molecular biology of iridoviruses. Kluwer Academic Publishers, Boston, pp 271–295

    Chapter  Google Scholar 

  20. Esteves A, Marques MI, Costa JV (1986) Two-dimensional analysis of African swine fever proteins and proteins induced in infected cells. Virology 152: 181–191

    Article  Google Scholar 

  21. Garcia-Beato R, Salas ML, Vinuela E, Salas J (1992) Role of the host cell nucleus in the replication of African swine fever virus DNA. Virology 188: 637–649

    Article  PubMed  CAS  Google Scholar 

  22. Geraldes A, Valdeira ML (1985) Effect of chloroquine on African swine fever virus infection. J Gen Virol 66: 1145–1148

    Article  PubMed  CAS  Google Scholar 

  23. Gierasch LM (1989) Signal sequences. Biochemistry 28: 923–930

    Article  PubMed  CAS  Google Scholar 

  24. Gonzalez A, Talavera A, Almendral JM, Vinuela E (1986) Hairpin loop structure of African swine fever virus DNA. Nucleic Acids Res 14: 6835–6844

    Article  PubMed  CAS  Google Scholar 

  25. Hanggy M, Bannwarth W, Stunnenberg HG (1986) Conserved TAAAT motif in vaccinia virus late promoters: overlapping TATA box and site of transcription initiation. EMBO J 5: 1071–1076

    Google Scholar 

  26. Kishimoto TK, O’Connor K, Lee A, Roberts TM, Springer TA (1987) Cloning of the 13 subunit of the leukocyte adhesion proteins: Homology to an extracellular matrix receptor defines a novel supergene family. Cell 48: 681–690

    Article  PubMed  CAS  Google Scholar 

  27. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157: 105–132

    Article  PubMed  CAS  Google Scholar 

  28. Leader DP, Katan M (1988) Viral aspects of protein phosphorylation. J Gen Virol 69: 1441–1464

    Article  PubMed  CAS  Google Scholar 

  29. Lonberg-Holm K (1981) Attachment of animal viruses to cells: an introduction. In: Lonberg-Holm K, Philipson L (eds) Virus receptors: Part 2, animal viruses. Chapman and Hall, London, pp 1–20

    Google Scholar 

  30. Marsh M, Helenius A (1989) Virus entry into animal cells. Adv Virus Res 36: 107–151

    Article  PubMed  CAS  Google Scholar 

  31. Matthews REF (1982) Classification and nomenclature of viruses. Karger, Basel

    Google Scholar 

  32. Maurer FD, Griesemer RA, Jones TC (1958) The pathology of African swine fever virus, a comparison with hog cholera. Am J Vet Res 19: 517–539

    PubMed  CAS  Google Scholar 

  33. Moss B (1990) Regulation of vaccinia virus transcription. Annu Rev Biochem 59: 661–668

    Article  PubMed  CAS  Google Scholar 

  34. Moura Nunes JF, Vigario JD, Terrinha AM (1975) Ultrastructural study of African swine fever virus. Arch Virol 49: 59–66

    Article  Google Scholar 

  35. Ortin J, Enjuanes L, Vinuela E (1979) Cross-links in African swine fever virus DNA. J Virol 31: 579–583

    PubMed  CAS  Google Scholar 

  36. Pearse BMF (1987) Clathrin and coated vesicles. EMBO J 6: 2507–2512

    PubMed  CAS  Google Scholar 

  37. Porterfield JS (1986) Antibody-dependent enhancement of viral infectivity. Adv Virus Res 31: 335–355

    Article  PubMed  CAS  Google Scholar 

  38. Rosel JL, Earl PL, Weir JP, Moss B (1986) Conserved TAAATG sequence at the transcriptional and translational initiation sites of vaccinia virus late genes deduced by structural and functional analysis of the HindIII H genome fragment. J Virol 60: 436–449

    PubMed  CAS  Google Scholar 

  39. Salas ML, Kuznar J, Vinuela E (1981) Polyadenylation, methylation and capping of the RNA synthesized in vitro by African swine fever virus. Virology 113: 484–491

    Article  PubMed  CAS  Google Scholar 

  40. Salas ML, Rey-Campos J, Almendral JM, Talavera A, Vinuela E (1986) Transcription and translation maps of African swine fever virus. Virology 152: 228–240

    Article  PubMed  CAS  Google Scholar 

  41. Santarén JF, Vinuela E (1986) African swine fever virus-induced polypeptides in Vero cells. Virus Res 5: 391–405

    Article  PubMed  Google Scholar 

  42. Sogo JM, Almendral JM, Talavera A, Vinuela E (1984) Terminal and internal inverted repetitions in African swine fever virus DNA. Virology 133: 271–275

    Article  PubMed  CAS  Google Scholar 

  43. Valdeira ML, Geraldes A (1985) Morphological study on the entry of African swine fever virus into cells. Biol Cell 55: 35–40

    PubMed  CAS  Google Scholar 

  44. Vinuela E (1985) African swine fever virus. Curr Top Microbiol Immunol 116: 151–170

    Article  PubMed  CAS  Google Scholar 

  45. Vinuela E (1987) Molecular biology of African swine fever virus. In: Becker Y (ed) African swine fever. Martinus Nijhoff Publishing, Boston, pp 31–49

    Chapter  Google Scholar 

  46. von Heijne G (1988) Transcending the impenetrable: how proteins come to terms with membranes. Biochim Biophys Acta 947: 307–333

    Google Scholar 

  47. Wilkinson PJ (1989) African swine fever virus. In: Pensaert MB (ed) Virus infections of porcines. Elsevier Science Publishers BV, Amsterdam, pp 17–37

    Google Scholar 

  48. Zuker M, Stiegler P (1981) Optimal computer folding of large DNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res 9: 133–144

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag

About this paper

Cite this paper

Angulo, A., Alcamí, A., Viñuela, E. (1993). Virus-host interactions in African swine fever: the attachment to cellular receptors. In: Kaaden, OR., Eichhorn, W., Czerny, CP. (eds) Unconventional Agents and Unclassified Viruses. Archives of Virology, vol 7. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9300-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9300-6_14

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82480-1

  • Online ISBN: 978-3-7091-9300-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics