Skip to main content

Ischemia as an Excitotoxic Lesion: Protection Against Hippocampal Nerve Cell Loss by Denervation

  • Conference paper
Mechanisms of Secondary Brain Damage

Part of the book series: Acta Neurochirurgica ((NEUROCHIRURGICA,volume 57))

Abstract

There are several indications for an involvement of neuroexcitatory mechanisms in ischemic neuron damage. Since we forwarded the hypothesis in 1982 that the transmitter glutamate is playing a key role, several lines of evidence have substantiated this: there is a pronounced transmitter release induced by ischemia and there is uptake of Ca++ via NMDA-operated calcium channels. Under certain circumstances postischemic neuron death can be impaired by administration of either NMDA-antagonists or calcium blockers.

Further proof for the induction of harmful excitatory mechanisms by ischemia has been obtained by preischemic denervation of the vulnerable nerve cells. After transient cerebral ischemia in rats or gerbils, there are signs of irreversible damage (eosinophilia) of neurons in the dentate hilus (somatostatin-positive cells) after 2–3 hours and of hippocampal pyramidal neurons after 2–3 days (delayed neuron death). In the first case, removal of the (main) input to hilus cells by degranulation (colchicine selectively eliminates granule cells) protects these. In the case of pyramidal neurons removal of Schaffer collaterals/commisurals or input from the entorhinal cortex have a protective effect.

Recently, we have measured glutamate and calcium in CA1 of denervated rats during 10 min of ischemia, and it turns out that there is almost no extracellular glutamate release or lowering of calcium in contrast to ischemic animals with intact innervation.

Also in the postischemic period there are indications of a continuation of the damaging processes induced by ischemia. Besides the well known postischemic hypoperfusion, a prolonged release of glutamate has been reported, as well as burst firing in some models. If an immediately postischemic denervation of CA1 neurons is performed, there is a partly protection of these cells.

The GABA-ergic interneurons, which are lying among the pyramidal neurons in CA1 are always resistant to ischemia; receptor autoradiography indicates that they have glutamate receptors of the kainate/quisqualate type but no (or few) of the NMDA-type.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen,BJ, Marmarou A (1989) Energy compartmentalization in neural tissue. J CerebBlood Flow Metabol 9 [Suppl 1]: S386

    Google Scholar 

  2. Auer RN, SiesjöBK (1988) Biological differences between ischemia, hypoglycemia, and epilepsy.Ann Neurol 24:699–707

    Article  PubMed  CAS  Google Scholar 

  3. Benveniste H,Drejer J, Schousboe A, Diemer NH (1984) Elevation of the extracellularconcentrations of glutamate and aspartate in rat hippocampus during transientcerebral ischemia monitored by intracerebral microdialysis. J Neurochem 43:1369–1374

    Article  PubMed  CAS  Google Scholar 

  4. Benveniste H,Diemer NH (1988) Early Postischemic 45 Ca accumulation in rat dentate hilus. JCereb Blood Flow Metabol 8: 713–719

    Article  CAS  Google Scholar 

  5. Benveniste H, JørgensenMB, Diemer NH, HansenAJ(1988) Calcium accumulation by glutamate receptor activation is involved inhippocampal cell damage after ischemia. Acta Neurol Scand 78: 529–536

    Article  PubMed  CAS  Google Scholar 

  6. Benveniste H,Jørgensen MB, SandbergM, Hagberg H, Diemer NH(1989) Ischemic damage in hippocampal CA1 is dependent on glutamate-release andintact innervation from CA3. J Cereb Blood Flow Metabol 9: 629–639

    Article  CAS  Google Scholar 

  7. Buchan AM,Pulsinelli WA (1989) Fimbria-fornix lesions: The temporal profile forprotection of CA1 hippocampus against ischemic injury. J Cereb Blood FlowMetabol 9 [Suppl 1]: S749

    Google Scholar 

  8. Cajal SR y(1893) Überdie feinereStruktur des Ammonshornes.Z Wiss Zool 56: 619–663

    Google Scholar 

  9. Choki J, Greenberg J, Reivich M (1983) Regional cerebral glucose metabolismduring and after bilateral cerebral ischemia in the gerbil. Stroke 14: 568–574

    Article  PubMed  CAS  Google Scholar 

  10. Crain BJ,Westerkam WD, Harrison AH, Nadler JV (1988) Selective neuronal death aftertransient forebrain ischemia in the Mongolian gerbil: a silver impregnationstudy. Neuroscience 27: 387–402

    Article  PubMed  CAS  Google Scholar 

  11. DiemerNH, Siemkowicz E (1980a) Increased 2-deoxyglucose uptake in hippocampus, globuspallidus and substantia nigra after cerebral ischemia. Acta Neurol Scand 61:56–63

    Article  PubMed  CAS  Google Scholar 

  12. Diemer NH,Siemkowicz E(1980b) Regional glucose metabolism and nerve cell damage aftercerebral ischemia in normoand hypoglycemic rats. In: Spatz M, Mrsjulja BB,Rakic LJ, Lust WD (eds) Circulatory and developmental aspects of brainmetabolism. Plenum, New York, pp 23–32

    Google Scholar 

  13. Diemer NH,Siemkowicz (1981) Regional neuron damage after cerebral ischemia in the normo-and hypoglycemic rat. Neuropath Appl Neurobiol 7: 217–227

    Article  CAS  Google Scholar 

  14. Diemer NH,Jørgensen MB, Johansen FF (1987) Significance of intra- and postischemicpathophysiological processes for development of ischemic nerve cell loss. In:Raichle ME, Powers WJ (eds) Cerebrovascular diseases. Raven, New York

    Google Scholar 

  15. Diemer NH, Sandberg M, Jørgensen MB,Benveniste H (1989) Ischemia-induced release of glutamate in the hippocampalCA1 region is decreased after removal of the excitatory input from CA3. J CerebBlood Flow Metabol 9 [Suppl 1]: S747

    Google Scholar 

  16. Dienel GA,Pulsinelli WA (1986) Uptake of radiolabelled ions in normal andischemia-damaged brain. Ann Neurol 19: 465–472

    Article  PubMed  CAS  Google Scholar 

  17. FieschiC, Sakurada O, Sokoloff L (1978) Local cerebral glucose utilization duringresolution of embolic experimental ischemia. In: Cervos-Navarro J, et al(eds) Advances ofneurology, 20. Raven, New York, pp 223–229

    Google Scholar 

  18. FranckJE, Kunkel DD, Baskin DG, Schwartzkroin PA (1988) Inhibition in kainate-lesioned hyperexcitablehippocampi:Physiologie,autoradiographic, and immunocytochemical observations. J Neurosci 8: 1991–2002

    PubMed  CAS  Google Scholar 

  19. GarthwaiteG, Garthwaite J (1989)Quisqualateneurotoxicity adelayed, CNQXsensitive processtriggered by a CNQX insensitive mechanism in young rat hippocampal slices.Neurosci Lett 99: 113–118

    Article  PubMed  CAS  Google Scholar 

  20. Greenamyre JT,Young AB,PenneyJB (1983) Quantitative autoradiography of L-3H-glutamate binding to rat brain.Neurosci Lett 37: 155–160

    Article  PubMed  CAS  Google Scholar 

  21. Hagberg H, Lehmann A, Sandberg M, Nystrom B,Jacobson I, Hamberger A (1985) Ischemia-induced shift of inhibitory andexcitatory amino acids from intra-to extracellular compartments. J Cereb BloodFlow Metabol 5: 413–419

    Article  CAS  Google Scholar 

  22. Halpain S,Parsons B, Rainbow TC (1983) Tritium-film autoradiographic distribution ofL-3H-glutamate binding sites in rat central nervous system. J Neurosci 4:2133–2144

    Google Scholar 

  23. Herreras O,Menendez N, Herranz AS, Solis JM, Martin del Rio R (1989) Synaptic transmissionat the Schaffer-CA1 synapse is blocked by 6,7-dinitro-quinoxaline-2,3,-dione.An in vivobrain dialysis study in the rat. Neurosci Lett 99: 119–124

    Article  PubMed  CAS  Google Scholar 

  24. Hossmann K-A (1985) Post-ischemic resuscitation of the brain: selective vulnerability versus globalresistance. In: Kogure K, Hossmann K-A, Siesjö BK, Welsh FA (eds)Progress in brain research, Vol 63. pp 3–17

    Article  PubMed  CAS  Google Scholar 

  25. Ito U, Spatz, M, Walker JT Jr,Klatzo I (1975) Experimental cerebral ischemia in Mongolian Gerbil. I. Lightmicroscopic observations. Acta Neuropath 32: 209–233

    Article  PubMed  CAS  Google Scholar 

  26. Johansen FF, Jørgensen MB, Diemer NH (1983)Resistance of hippocampal CA1 interneurons to 20 min of transientcerebral ischemia in the rat. Acta Neuropath 61: 135–140

    Article  Google Scholar 

  27. Johansen FF,Jørgensen MB, von Lubitz DKJE, DiemerNH(1984) Selective dendrite damage in hippocampal CA1 stratum radiatum withunchanged axon ultrastructure and glutamate uptake after transient cerebralischemia in the rat. Brain Res 291: 373–377

    Article  PubMed  CAS  Google Scholar 

  28. Johansen FF,Jørgensen MB, Diemer NH (1987) Ischemiainduced neuronal death in the CA1hippocampus is dependent on intact glutamatergic innervation. In: Hicks TP,Lodge D, McLennan H (eds) Excitatory amino acid transmission. Liss, New York,pp 245–248

    Google Scholar 

  29. Johansen FF,Zimmer J,Diemer NH (1987) Early loss of somatostatin neurons in dentate hilus aftercerebral ischemia in the rat precedes CA1 pyramidal cell loss. Acta Neuropath73: 110–114

    Article  PubMed  CAS  Google Scholar 

  30. Jørgensen MB, DiemerNH (1982) Selective neuron loss after cerebral ischemia in the rat possiblerole of transmitter glutamate. Acta Neurol Scand 66: 536–546

    Article  PubMed  Google Scholar 

  31. Jørgensen MB,Johansen FF, Diemer NH (1987) Removal of the entorhinal cortex protectshippocampal CA1 neurons from ischemic damage. Acta Neuropath 73: 189–194

    Article  PubMed  Google Scholar 

  32. Jørgensen MB,Wright DC (1988) The effect of unilateral and bilateral removal of theentorhinal cortex on the glucose utilization in various hippocampal regions inthe rat. Neurosci Lett 87: 227–232

    Article  PubMed  Google Scholar 

  33. Jørgensen MB,Wright DC, Diemer NH (1989) The effect of CA1 lesion and CA3 lesion on thepostischemic glucose metabolism in the rat brain. J Cereb Blood Flow Metabol 9[Suppl 1 ]: S552

    Google Scholar 

  34. Kameyama M,Wasterlain CG,Ackermann RF,Finch D, Lear J, KuhlDE (1983)Neuronalresponseof the hippocampal formation to injury: Blood flow, glucose metabolism andprotein synthesis. Exp Neurol 79: 329–346

    Article  PubMed  CAS  Google Scholar 

  35. Kauppinen RA, McMahon HT, NichollsDG (1988) Ca2+ dependent and Ca2+ independent glutamaterelease, energy status and cytosolic free Ca2+ concentration inisolated nerve terminals following metabolic inhibition — possible relevance tohypoglycemia and anoxia. Neuroscience 27: 175–182

    Article  PubMed  CAS  Google Scholar 

  36. Kirino T, TamuraA, Sano K (1985) Selective vulnerability of the hippocampus to ischemia -reversible and irreversible types of ischemic cell damage. In: Kogure K, Hossmann K-A, Siesjö BK,Welsh FA (eds) Progress in brain research, Vol 63. pp 39–58

    Google Scholar 

  37. Kohler C, Schwarz R, Fuxe K (1978)Perforant path transections protect hippocampal granule cells from kainatelesion. Neurosci Lett 10: 241–246

    Article  PubMed  CAS  Google Scholar 

  38. Korf J, Klein HC,Venema K, Postema F (1988) Increases in striatal and hippocampal impedance andextracellular levels of amino acids by cardiac arrest in freely moving rats. JNeurochem5O: 1087–1096

    Article  Google Scholar 

  39. Lee KS,Kreutzberg GW (1987) The role of adenosine neuromodulation in postanoxichyperexcitability. In: Gerlach E, Becker BF (eds) Topics andperspectives in adenosine research. Springer, Berlin Heidelberg New York Tokyo,pp 574–585

    Google Scholar 

  40. Linden T, KalimoH, WielochT(1987) Protective effect of lesion to the glutamatergic cortico-striatalprojections on the hypoglycemic nerve cell injury in rat striatum. ActaNeuropath (Bed) 74: 335–344

    Article  CAS  Google Scholar 

  41. Martins E,Inamura K, ThemnerK,Malmquist KG, Siesjö BK (1988) Accumulation of calcium and loss of potassium inthe hippocampus following transient cerebral ischemia: a proton microprobestudy.J Cereb Blood Flow Metabol 8: 531–538

    Article  CAS  Google Scholar 

  42. Monaghan DT,Holets RV, Toy DW, Cotman CW (1983) Anatomical distributions of fourpharmacologically distinct 3H-glutamate binding sites. Nature 306: 176–179

    Article  PubMed  CAS  Google Scholar 

  43. Murphy SN, MillerRJ (1988) A glutamate receptor regulates Ca2+ mobilization inhippocampal neurons. Proc Natl Acad Sci USA 85: 8737–8741

    Article  PubMed  CAS  Google Scholar 

  44. Novelli A, ReillyJA,LyskoPG, Henneberry RC (1988) Glutamate becomes neurotoxic via theN-methyl-D-aspartate receptor when intracellular energy levels are reduced.Brain research 45: 205–212

    Article  Google Scholar 

  45. Pappius HM (1988)Significance of biogenic amines in functional disturbances resulting from braininjury. Metab Brain Dis 3: 303–310

    Article  PubMed  CAS  Google Scholar 

  46. Pulsinelli, WA, Brierley, JB(1979) A new model of bilateral hemispheric ischemia in the unanesthetized rat.Stroke 10: 267–272

    Article  PubMed  CAS  Google Scholar 

  47. Pulsinelli WA,Levy DE,DuffyTE (1982) Regional cerebral blood flow and glucose metabolism followingtransient forebrain ischemia. Ann Neurol 11: 499–509

    Article  PubMed  CAS  Google Scholar 

  48. Schmidt-KastnerR, Hossmann K-A (1988)Distribution of ischemic neuronal damage in the dorsal hippocampusof rat. Acta Neuropath (Bed) 76: 411–421

    Article  CAS  Google Scholar 

  49. Sokoloff L,Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O,Shinohara M (1977) The (14C) deoxyglucose method for the measurementof local cerebral glucose utilization: theory, procedure, and normal values inthe conscious and anesthetized albino rat. J Neurochem 28: 897–916

    Article  PubMed  CAS  Google Scholar 

  50. Sugiyama H, ItoI, Hirono C (1987) A new type of glutamate receptor linked to inositolphospholipid metabolism. Nature 325:531–533

    Article  PubMed  CAS  Google Scholar 

  51. Wieloch T, Lindvall O,Blomquist P, Gage FH (1985) Evidence for amelioration of ischemic neuronal damage in thehippocampal formation by lesions of the perforant path. Neurol Res 7: 24–26

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag

About this paper

Cite this paper

Diemer, N.H. et al. (1993). Ischemia as an Excitotoxic Lesion: Protection Against Hippocampal Nerve Cell Loss by Denervation. In: Baethmann, A., Kempski, O., Schürer, L. (eds) Mechanisms of Secondary Brain Damage. Acta Neurochirurgica, vol 57. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9266-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9266-5_14

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-9268-9

  • Online ISBN: 978-3-7091-9266-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics