Advertisement

Eye, Head and Arm Coordination and Spinal Reflexes in Weightlessness — MONIMIR Experiment

  • M. Berger
  • F. Gerstenbrand
  • I. B. Kozlovskaya
  • N. Burlatchkova
  • A. Muigg
  • A. Sokolov
  • B. Babaev
  • I. Grill
  • M. Borisov
  • C. DeCol
  • G. Holzmüller
  • E. Hochmair
  • G. Steinwender

Abstract

One of the most important fields of research being conducted in space medicine concerns the effect of weightlessness on the human locomotor system and its control systems in the central nervous system. Under terrestrial conditions, the earth’s gravitational field constantly influences all sensory motor functions. Only by adapting to gravity is it possible for man to assume an erect posture. Studies of human motor functions under microgravity offer new possibilities for analyzing the sensory motor systems and their influence on posture and motion.

Keywords

Cervical Spine Head Movement Patellar Tendon Motor Pattern Body Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kozlovskaya I B, Kirenskaya A V, Dimitrieva I F (1987) Gravitational mechanisms in motor system. Studies in real and simulated weightlessness. In: New concepts of motor control. Pergamon Press, pp 37-47.Google Scholar
  2. 2.
    Brooks V B, Thach W T (1981) Cerebellar control of posture and movements / motor control. In: Brooks V B (ed) Handbook Physiol, vol. 2. Amer Physiol Soc, Bethesda, pp 877–946.Google Scholar
  3. 3.
    Kozlovskaya I B, Kidinova M B, Artemjeva E N (1974) Studies of spinal mechanisms of the motor control in patients with cerebellar disorders. III. Intern Symp on motor control, Varna, 38.Google Scholar
  4. 4.
    Kozlovskaya I B, Koserenko O P, Kreidich Yu V, Rakhmanov A S (1979) Effects of 140 day space-flight on motor system. Proc VI Conference on space biology, Kaluga, p 18.Google Scholar
  5. 5.
    Chkhaidze L V (1968) Coordination of voluntary movements of man in space-flight environment. Nauka, Moscow, p 133.Google Scholar
  6. 6.
    Stam J, VanCrevel H (1989) Measurement of tendon reflex by surface electromyographie in normal subjects. J Neurol 236: 231–237.CrossRefGoogle Scholar
  7. 7.
    Kass J R, von Baumgarten R J, Neck receptor stimulation in G0-and G1. Institute for Physiology, Johannes Gutenberg Universität Mainz, Germany.Google Scholar
  8. 8.
    Cohen B (1988) Representation of 3 dimensional space in vestibular, oculomotor and visual system. Ann N Y Acad Sci 545: 239–247.CrossRefGoogle Scholar
  9. 9.
    Berger M, Gerstenbrand F, Marosi M, Muigg A, Kozlovskaya I B, Coordination of eye, head and arm movements in weightlessness, ESA — Fourth European Symp., Triest 28.5–1.6.90.Google Scholar
  10. 10.
    Berger M, Hochmair E, Holzmüller G, Ostermann M, Steinwender G (1992) Bewegungsanalyse unter Mikrogravitation: Theorie und Praxis zur Berechnung der Zielbewegung mit der MONIMIR-Helmlampe. Biomedizinische Technik 37: # 4, 73–77.Google Scholar
  11. 11.
    Furnee, E H: TV/Computer Motion Analysis Systems: The First Two Decades. PhD Thesis, Delft University of Technology, TU Delft (1989).Google Scholar
  12. 12.
    Saito S, Yamanobe H, Tsukahara A (1974) A photoelectronic device for recording of 3-D positional changes and its application to analysis of human motions. Tohoku J Exp Med 113: 25–35.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1992

Authors and Affiliations

  • M. Berger
  • F. Gerstenbrand
  • I. B. Kozlovskaya
  • N. Burlatchkova
  • A. Muigg
  • A. Sokolov
  • B. Babaev
  • I. Grill
  • M. Borisov
  • C. DeCol
  • G. Holzmüller
  • E. Hochmair
  • G. Steinwender

There are no affiliations available

Personalised recommendations