Skip to main content

AUDIMIR — Directional Hearing at Microgravity

  • Chapter
Health from Space Research

Abstract

The goal of AKG’s engagement in the AUSTROMIR mission was to make use of AKG’s know-how in acoustic communications technology to improve future communication systems for space travel. The project AUDIMIR offered the opportunity to make a first step in that direction. The primary topic was the so-called binaural technology for headphone reproduction, which was intended to demonstrate its usefulness for space travel. During the definition of the experiment, however, the technology turned out to open up new possibilities for medical research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fisher S S, Wenzel E M, Coler C, McGreevy M W (1988) Virtual interface environment workstations. Proc Hum Fac Soc 32: 91–95.

    Google Scholar 

  2. Wenzel E M, Wightman F L, Foster S H (1988) A virtual display system for conveying three-dimensional acoustic information. Proc Hum Fac Soc 32: 86–90.

    Google Scholar 

  3. Furness T A (1986) The super cockpit and its human factors challenges. Proc Hum Fac Soc 30: 48–52.

    Google Scholar 

  4. Calhoun G L, Valencia G, Furness T A (1987) Three-dimensional auditory cue simulation for crew station design/evaluation. Proc Hum Fac Soc 31: 1398–1402.

    Google Scholar 

  5. Colquhoun W P (1975) Evaluation of auditory, visual, and dual-mode displays for prolonged sonar monitoring in repeated sessions. Hum Fac 17: 425–437.

    Google Scholar 

  6. Warren D H, Welch R B, McCarthy T J (1981) The role of visual-auditory “compellingness” in the ventriloquism effect: Implications for transitivity among the spatial senses. Perc & Psychophys 30: 557–564.

    Article  Google Scholar 

  7. O’Leary A, Rhodes G (1984) Cross-modal effects on visual and auditory object perception. Perc & Psychophys 35: 565–569.

    Article  Google Scholar 

  8. Patterson R R (1982) Guidelines for auditory warning Systems on civil aircraft. Civil Aviation Authority Paper No. 82017, London.

    Google Scholar 

  9. Doll T J, Gerth J M, Engelman W R, Folds D J (1986) Development of simulated directional audio for cockpit applications. USAF Report No. AAMRL-TR-86-014.

    Google Scholar 

  10. Edwards ADN (1989) Soundtrack: An auditory interface for blind users. Hum Comp Interact 4: 45–66.

    Article  Google Scholar 

  11. Loomis J M, Hebert C, Cicinelli J G (1990) Active localization of virtual sounds. J Acoust Soc Am 88: 1757–1764.

    Article  Google Scholar 

  12. Nefjodova M: Private communication.

    Google Scholar 

  13. Müller Ch (1991) OPTOVERT, Optokinetische Stimulation in Schwerelosigkeit. AUSTROMIR Handbuch.

    Google Scholar 

  14. Persterer A (1988) CAP Creative Audio Processor — ein Hochleistungssystem zur digitalen Audiosignalverarbeitung. Bericht 15. Tonmeistertagung, 405-414.

    Google Scholar 

  15. Richter F, Persterer A (1989) Design and applications of a creative audio processor. 86th Audio Engineering Society Convention, Hamburg 1989, preprint 2782.

    Google Scholar 

  16. Persterer A: Ein Hochleistungssystem zur digitalen Audiosignalverarbeitung. Fortschritte der Akustik — DAGA 89, Tagungsband.

    Google Scholar 

  17. Persterer A (1989) A very high performance digital audio signal processing system. Proc. 13th International Congress on Acoustics, Belgrade, 1989.

    Google Scholar 

  18. Persterer A (1989) A very high performance digital audio signal processing system. IEEE ASSP Workshop on Applications of Signal Processing to Audio and Acoustics, New Paltz, NY, 1989.

    Google Scholar 

  19. Wöhr M, Theile G, Goeres H, Persterer A (1990) Room-related balancing technique — a method for optimizing recording quality. 88th Audio Engineering Society Convention, Montreux 1990, preprint 2886.

    Google Scholar 

  20. Wöhr M, Theile G, Goeres H, Persterer A (1991) Room-related balancing technique — a method for optimizing recording quality. J Audio Engineering Soc 39/9.

    Google Scholar 

  21. Pösselt C, Schröter J, Opitz M, Divenyi P, Blauert J (1986) Generation of binaural signals for research and home entertainment. Proc. 12th International Congress on Acoustics, Toronto, 1986.

    Google Scholar 

  22. FIM Filter Manager. AKG Manual.

    Google Scholar 

  23. Persterer A (1990) Binaurale Simulation des “idealen” Abhörraumes für Kopfhörerwiedergabe. Bericht 16. Tonmeistertagung.

    Google Scholar 

  24. Persterer A (1991) Binaural simulation of an ‘Ideal Control Room’ for headphone reproduction. 90th Audio Engineering Society Convention, Paris 1991, preprint 3062.

    Google Scholar 

Download references

Authors

Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag/Wien

About this chapter

Cite this chapter

Persterer, A., Berger, M., Koppensteiner, C., Müller, C., Nefjodova, M., Opitz, M. (1992). AUDIMIR — Directional Hearing at Microgravity. In: Health from Space Research. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9260-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9260-3_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82413-9

  • Online ISBN: 978-3-7091-9260-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics