Advertisement

Abstract

Plants and plant products have been used as drugs for thousands of years and in recent history have provided a definite stimulus for the development of natural products chemistry. After the first report on forskolin (1) (1) in 1977, the last decade has witnessed an increasing amount of research on the chemistry, synthesis, biochemistry, pharmacology and various other aspects of the substance in many academic as well as industrial research laboratories all over the world, leading to a large number of publications, patents and dissertations.

Keywords

Intraocular Pressure Adenylate Cyclase Total Synthesis Conjugate Addition Lithium Aluminium Hydride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bhat, S.V., B.S. Bajwa, H. Dornauer and N.J. deSouza: Structure and Stereochemistry of New Labdane Diterpenoids from Coleus forskohlii Briq. Tetrahedron Lett., 1669–72. (1977).Google Scholar
  2. 2.
    Seamon, K.B. and J.W. Daly: Forskolin: A Unique Diterpene Activator of Cyclic AMP Generating System. J. Cyclic Nucleotide Res., 7, 201–24 (1981).Google Scholar
  3. 3.
    Seamon, K.B. and J.W. Daly: Forskolin:; Cyclic AMP and Cellular Physiology. Trends Pharmacol Sci. 4, 120–23 (1983).Google Scholar
  4. 4.
    deSouza, N.J., A.N. Dohadwalla and J. Reden: Forskolin: A Labdane Diterpenoid with Antihypertensive, Positive Inotropic, Platelet Aggregation Inhibitory and Adenylate Cyclase Activating Properties. Med. Res. Rev. 3, 201–19 (1983).Google Scholar
  5. 5.
    Georgieva, Z. and P. Uzunov: Diterpene Forskolin - a Valuable Agent for Demonstration of the Role of Cyclic 3’-5’-Adenosine Monophosphate in Physiological Processes. Eksp. Med. Morfol., 27, 56–61 (1988) (Bulg.) Chem. Abstc. 109, 66182m.Google Scholar
  6. 6. a)
    Seamon, K.B.: Forskolin and Adenylate Cyclase, New Opportunities in Drug Design. Ann. Rep. Med. Chem., 19, 293–302 (1984).Google Scholar
  7. b).
    Daly J.W.: Forskolin, Adenylate Cyclase and Cell Physiology, An Overview. Adv. Cyclic Nucleotide Res. 17, 81–89 (1984).Google Scholar
  8. 7.
    Seamon, K.B. and J.W. Daly: Forskolin: Its Biological and Chemical Properties. Adv. Cyclic Nucleotide Res. 20, 1–38 (1986).Google Scholar
  9. 8.
    Dohadwalla, A.N.: Natural Product Pharmacology, Strategies in Search of Leads for New Drug Design Trends in Pharm. Sci. 6, 49–53 (1985).Google Scholar
  10. 9.
    Laurenza, A., E.M. Sutkowski and K.B. Seamon: Forskolin: A Specific Stimulator of Adenylyl Cyclase or a Diterpene with Multiple Sites of Action. Trends in Pharmacol. Sci., 10, 442–47 (1989).Google Scholar
  11. 10.
    deSouza, N.J., A.N. Dohadwalla and R.H. Rupp (eds.): Forskolin: Its Chemical, Biological and Medical Potential. Hoechst India Limited (1986).Google Scholar
  12. 11.
    Colombo, M.I., J. Zinczuk and E.A. Ruveda: Synthetic Routes to Forskolin, Tetrahedron Report No 306, 48, 963–1037 (1992).Google Scholar
  13. 12.
    Wolfgang, J.: Total Synthesis of Forskolin: Synform, 1990, 149–168; Synthesis of Intermediates for Forskolin, Synform, 1990, 169–206.Google Scholar
  14. 13.
    References to the medicinal use of “Pashanbhedi” are found in Shaligram Nighantu Bhushman Khemraj Srikrishnadas Shresti, Bombay, India. Parts 7–8, p. 194 (1904); Chunekar Krishnachandra Bhavaprakasa Nighantu, Hindi translation, Chaukhamba Sanskrit Sansthan, Varanasi, India, p. 104 (1969).Google Scholar
  15. 14.
    Bhakuni, D.S., M.L. Dhar, M.M. Dhar, B.N. Dhawan, B. Gupta and R.C. Srimal: Screening of Indian Plants for Biological Activity. Indian J. Exp. Biol., 9, 91–102 (1971).Google Scholar
  16. 15.
    Bhat, S.V., B.S. Bajwa, H. Dornauer and N.J. deSouza: Reactions of Forskolin, a Biologically Active Diterpenoid from Coleus forskohlii. J. Chem. Soc., Perkin Trans. 1, 1982, 767–71Google Scholar
  17. 16.
    Bhat, S.V., A.N. Dohadwalla, B.S. Bajwa, N.K. Dadkar, H. Dornauer and N.J. deSouza: The Antihypertensive and Positive Inotropic Diterpene Forskolin. Effects of Structural Modifications on its Activity. J. Med. Chem. 26, 486–92 (1983).Google Scholar
  18. 17.
    Tandon, J.S., M.M. Dhar, S. Ramakumar and K. Venkatesan: Structure of Coleonol, a Biologically Active Diterpene from Coleus forskohlii. Indian J. Chem., 15 B, 880–83 (1977).Google Scholar
  19. 18. a)
    Tandon, J.S., P.K. Jauhari, R.S. Singh and M.M. Dhar: Structures of Three New Diterpenes, Coleonol B, Coleonol C and Deoxycoleonol Isolated from Coleus forskohlii. Indian J. Chem., 16B, 341–45 (1978).Google Scholar
  20. b).
    Katti, S.B., P.K. Jauhari and J.S. Tandon: New Diterpenes fromColeus forskohlii, Structure of the Diterpenes, Coleonol D, Coleol and Coleonone. Indian J. Chem., 17B, 321 (1979).Google Scholar
  21. c).
    Painuly, C.P., S.B. Katti and J.S. Tandon: Diterpenes from Coleus forskohlii: Structures of Coleonol E and Coleonol F. Indian J. Chem. 18B, 214–16 (1979).Google Scholar
  22. 19.
    Tandon, J.S., P. Painuly, S.B. Katti and S. Singh: Chemistry and Antihypertensive Activity of Coleonol Derivatives. Indian J. Chem., 23B, 67–69 (1984).Google Scholar
  23. 20.
    Singh, S. and J.S. Tandon: Coleonol and Forskolin from Coleus forskohlii. Planta Med., 45, 62–63 (1982).Google Scholar
  24. 21.
    Saksena, A.K., M.J. Green, H.J. Shue, J.K. Wong and A.T. McPhail: Identity of Coleonol with Forskolin, Structure Revision of a Base Catalysed Rearrangement Product. Tetrahedron Lett., 26, 551–54 (1985).Google Scholar
  25. 22. a)
    Prakash, O., R. Roy and M.M. Dhar: A Nuclear Magnetic Resonance Study of Coleonol. J. Chem. Soc., Perkin Trans. II, 1986, 1779–83.Google Scholar
  26. b).
    Prakash, O., R. Roy, J.S. Tandon and M.M. Dhar: Carbon-13 and Proton Two Dimentional NMR Study of Diterpenoids of Coleus forskohlii. Magn. Reson. Chem. 26, 117 (1988).Google Scholar
  27. 23.
    Viswanathan, N. and D.H. Gawad: Identity of Forskolin with Coleonol. Indian J. Chem., 24, 583 (1985).Google Scholar
  28. 24.
    Gabetta, B., G. Zini and B. Danieli: Minor Diterpenoids of Coleus forskohlii. Phytochemistry, 28, 859–62 (1989).Google Scholar
  29. 25.
    Jauhari, P.K., S.B. Katti, J.S. Tandon and M.M. Dhar: Coleosol, a New Diterpene from Coleus forskohlii. Indian J. Chem. 16B, 1055–57 (1978).Google Scholar
  30. 26.
    Akhila, A., K. Rani and R.S. Thakur: Biogenetic Relationship of Polyoxygenated Diterpenes in Coleus forskohlii. Phytochemistry, 29, 821–24 (1990).Google Scholar
  31. 27.
    Tandon, J.S., R. Roy, S. Balachandran and R.A. Vishwakarma: 13-Epi-9-deoxy- forskolin. Bioorg. Med. Chem. Lett., 2, 249–54 (1992).Google Scholar
  32. 28.
    Paulus, E.F.: Molecular and Crystal Structure of l-Benzyl-7-deacetyl-7- bromoisobutyryl forskolin. Z. Kristallogr., 153, 43–49 (1980).Google Scholar
  33. 29.
    Paulus, E.F.: Molecular and Crystal Structure of Forskolin, Z. Kristallogr., 152, 239–45 (1980).Google Scholar
  34. 30.
    Veldas III L.J. and M. Koreeda: Synthesis of the 6-benzoyl Derivative of 1-Deoxy- l-oxo-7-deacetylforskolin and an Unambiguous Assignment of the Absolute Stereochemistry of Forskolin, J. Org. Chem., 56, 844–46 (1991).Google Scholar
  35. 31.
    Kogler, H., and H.W. Fehlhaber: NMR investigations of Forskolin, Complete Assignment of Proton and 13C-NMR Spectra and Conformational Analysis. Magn. Res. Chem. 29, 993–8 (1991).Google Scholar
  36. 32.
    Vishwakarma, R.K., B.R. Tyagi, B. Ahmed and A. Husain: Variations in Forskolin Content. Planta Med., 54, 471–72 (1988).Google Scholar
  37. 33.
    Mersinger, R., H. Dornauer and E. Reinhard: Formation of Forskolin by Suspension Cultures of Coleusforskohlii. Planta Med., 54, 200–04 (1988).Google Scholar
  38. 34.
    Sharma, N., K.P.S. Chondel and V.K. Srivastava: In Vitro Propagation of Coleus forskohlii Briq, a Threatened Medicinal Plant. Plant Cell Rep., 10, 67–70 (1991)Google Scholar
  39. 35.
    Inamdar, P.K., H. Dornauer and N.J. deSouza: GLC method for Assay of Forskolin, a Novel Positive Inotropic and Blood Pressure Lowering Agent. J. Pharmaceut. Sci., 69, 1449 (1980).Google Scholar
  40. 36.
    Inamdar, P.K., P.V. Kanitkar, J. Reden and N.J. deSouza: Quantitative determination of Forskolin by TLC and HPLC. Planta Med., 43, 30–34 (1984).Google Scholar
  41. 37.
    Shah, V., S.V. Bhat, B.S. Bajwa, H. Dornauer and N.J. Desouza: The Occurrence of Forskolin in Labiatae. Planta Med., 39, 183–85 (1980).Google Scholar
  42. 38.
    Baslas-Pradeepkumar, R.K.: Phytochemical Studies of Plants of Coleus Genera, Herba Hungarica, 20, 213–21 (1981).Google Scholar
  43. 39.
    Rüedi, P. and C.H. Eugster: Diterpenoide Driisenfarbstoffe: Coleon L, ein neues Diosphenol aus Coleus somaliensis S. Moore, Revision der Strukturen von Coleon H,I,I′,K. Helv. Chim. Acta. 60, 1233–38 (1977) and references cited therein.Google Scholar
  44. 40.
    Wang, A.H.-J., I.C. Paul, R. Zelnik, D. Lavie and E.C. Levy: Structure and Stereochemistry of Cyclobutasin, a Diterpenoid containing a Four-membered Ring. J. Am. Chem. Soc., 96, 580–81 (1974) and references cited therein.Google Scholar
  45. 41.
    Khandelwal, Y., K. Rajeshwari, R. Rajgopalan, Lakshmi Swamy, A.N. Dohad- Walla, N.J. deSouza and R.H. Rupp: Cardiovascular Effects of New Water Soluble Derivatives of Forskolin. J. Med. Chem., 31, 1872–79 (1988).Google Scholar
  46. 42.
    Kosley, R.W. Jr. and R.J. Cherill: Regioselective Acylations of 7-Deacetylforskolin. J. Org. Chem., 54, 2972–75 (1989).Google Scholar
  47. 43.
    Sequin, E., N. Ferry, J. Hanoune and M. Koch: Effect of Novel 7(3-Derivatives of Forskolin upon Human Platelet Adenylate cyclase System. Planta Med., 54, 4–6 (1988).Google Scholar
  48. 44.
    O′malley, G.J., B. Spahl, R.J. Cherill and R.W. Kosley, Jr.: Regiocontrolled Reactions of 7-deacetylforskolin, Synthesis of 6- and 7-carbamate. J. Org. Chem. 55, 1102–1105 (1990).Google Scholar
  49. 45.
    Wadzinski, B.E., M.F. Shanahan and A.E. Ruoho: Derivatization of the Human Erythrocyte Glucose Transporter Using a Novel Forskolin Photoaffinity Label. J. Biol. Chem. 262, 17683–89 (1987).Google Scholar
  50. 46.
    Watt, D.S., K. Kawada, E. Leyva and M.S. Platz: Exploratory Photochemistry of Iodinated Aromatic Azides. Tetrahedron Lett., 30, 899–902 (1989).Google Scholar
  51. 47.
    Morris, D.I., L.A. Speicher, A.E. Ruoho, K.D. Tew and K.B. Seamon: Interaction of Forskolin with the P-Glycoprotein Multidrug Transporter. Biochemistry, 30, 8371–79 (1991) and references cited there in.Google Scholar
  52. 48.
    Pfeuffer, E. and T. Pfeuffer: Affinity Labelling of Forskolin Binding Proteins: Comparison Between Glucose Carrier and Adenylate Cyclase. FEBS Letters, 248, 13–17 (1989).Google Scholar
  53. 49.
    Shanahan, M.F., D.P. Morris and B.M. Edwards: 3[H]-Forskolin, Direct Photo- affinity Labelling of the Erythrocyte D-Glucose Transporter. J. Biol. Chem., 262, 5978–84 (1987).Google Scholar
  54. 50.
    Seamon, K.B., R. Vaillancourt, M. Edwards and J.W. Daly: Binding of [3H]- Forskolin to Rat Brain Membranes. Proc. Nat. Acad. Sci. USA, 81, 5081–85 (1984).Google Scholar
  55. 51.
    Salfe, S. and D.R. Storm: Deacetylation of Forskolin Catalyzed by Bovine Brain Membranes. Biochem. Biophys. Res. Comm. 133, 52–59 (1985).Google Scholar
  56. 52.
    Pfeuffer, T. and H. Metzger: 7–0-Hemisuccinyl-7-deacetyl-forskolin-sepharose a Novel Affinity Support for Purification of Adenylate Cyclase. FEBS Letters, 146, 369–75 (1982).Google Scholar
  57. 53.
    Khandelwal, Y., G. Moraes, N.J. DeSouza, H.-W. Fehlhaber and E.F. Paulus: Oxidation-Reduction Studies with Forskolin. Tetrahedron Lett., 1986, 6249–52 (1986).Google Scholar
  58. 54.
    Delpech, B. and R. Lett: Synthesis of 14,15-Dehydro-forskolin Via Dimethyl Diazomethylphosphonate Anion Reaction with an Aldehyde. Tetrahedron Lett., 30, 1521–24 (1989).Google Scholar
  59. 55.
    Hirb, N.J.: Synthesis of 12-Oxygenated Forskolin, J. Chem. Soc., Chem. Comm., 1987, 1338–40.Google Scholar
  60. 56.
    Hirb, N.J.: A Synthesis of Forskolin, Hydroxylation of 9-deoxyforskolin. Tetrahedron Lett., 28, 19–22 (1987).Google Scholar
  61. 57.
    Scherkenbeck, J., D. Bottger and P. Welzel: 1,9-Dideoxyforskolin, Enolate Formation, Oxidation, Tetrahedron, 43, 3797–3802 (1987).Google Scholar
  62. 58.
    Shutske, G.M.: Synthesis of 12-Bromo-, 12-Chloro- and 12-Fluoroforskolins. J. Chem. Soc., Perkin Trans. 1, 1989, 1544–46.Google Scholar
  63. 59.
    Nadkarni, S.R., P.M. Akut, B.N. Ganguli, Y. Khandelwal, N.J. DeSouza and R.H. Rupp: Microbial Transformation of 1,9-Dideoxyforskolin to Forskolin. Tetrahedron Lett., 27, 5265–68 (1986).Google Scholar
  64. 60.
    Inamdar, P.K., Y. Khandelwal, M. Garkhedkar, R. Rupp and N.J. DeSouza: Identification of Microbial Transformation Product of 1,9-Dideoxyforskolin and 7- Deacetyl-1,9-dideoxy-forskolin. Planta Med. 55, 386–7 (1989).Google Scholar
  65. 61.
    Khandelwal, Y., P.K. Inamdar, N.J. DeSouza, R.H. Rupp, S. Chatterjee and B.N. Ganguli: Novel 1,9-Dideoxyforskolin Analogues through Microbial Transformations. Tetrahedron, 44, 1661–66 (1988).Google Scholar
  66. 62.
    Aretz, W., D. Boettger and K. Sauber: Production of Forskolin Derivatives by Microbial Hydroxylation or Oxidation with Neurospora crassa for Pharmaceutical Use. Ger. Offen. DE 3,527,336 (CI. C07D311/94) 05, Feb. 1987; Chem Abstr. 106, 212559w.Google Scholar
  67. 63.
    Aretz, W., D. Boettger and K. Sauber: Production of Forskolin Derivatives by Microbial Hydroxylation or Oxidation with Strains ofMortierella for Pharmaceutical Use. Ger. Often. DE 3,527,335, (CI. C07D311/94) 05, Feb. 1987; Chem. Abstr. 106, 212558v.Google Scholar
  68. 64. a)
    Khandelwal, Y., N.J. DeSouza, S. Chatterjee, B.N. Ganguli and R.H. Rupp: Synthesis of Metabolites of Forskolin. Tetrahedron Letters, 28, 4089–92 (1987).Google Scholar
  69. b).
    Lal, B.R., H. Gidwani and R.H. Rupp: Aluminium Chloride as a Powerful Catalyst for the Preparation of O-Isopropylidene and O-Benzylidene Derivatives of Labdanes. Synthesis, 1989, 711–13.Google Scholar
  70. 65.
    Garcia-Granados, A., A. Martinez, M.B. Jimenez, M.E. Onorato, F. Rivas and J.M. Arias: Microbial Transformation of an erci-13-epi-Manoyl Oxide by Curvularia lunata, a Possible Route to the Synthesis of em-Forskolin Analogs. J. Chem. Res. Synop., 1990, 94–5.Google Scholar
  71. 66.
    Vishwakarma, R.A. and J.S. Tandon: Stereoisomers of Coleonol (Forskolin) and Related Diterpenoids. Tetrahedron Lett., 31, 7493–94 (1990).Google Scholar
  72. 67.
    Vishwakarma, R.A.: Spiroforskolin; Acid Catalyzed Rearrangement Product of Forskolin. Tetrahedron Lett., 30, 131–32 (1989).Google Scholar
  73. 68.
    Saksena, A.K., M.J. Green, H.J. Shue and J.K. Wong: Forskolin: A Convenient Degradation to 14–15-Dinor-8–13-epoxy-1α-6β-7β-9α-tetrahydroxylabd-12-en-11 - one-7-acetate-l,9-carbonate, via β-Elimination of an Aldoxime. J. Chem. Soc., Chem. Comm. 1985, 1748.Google Scholar
  74. 69.
    Delpech, B. and R. Lett: Retrosynthetic Studies with Forskolin. Tetrahedron Lett., 281,4061–64(1987).Google Scholar
  75. 70.
    Hashimoto, S., M. Sonegawa, S. Sakata and S. Ikegami: A Stereocontrolled Synthesis of (±)-l,6,7-Trideoxyforskolin, J. Chem. Soc., Chem. Comm., 1987 24–25.Google Scholar
  76. 71.
    Ziegler, F.E. and B.H. Jaynes: Reconstruction of Forskolin from a Ring C Dihydro- pyran-4-one Degradation Product Thereof, Tetrahedron Letters, 28, 2339–42 (1987).Google Scholar
  77. 72.
    Ziegler, F.E. and B.H. Jaynes: Formation of (±) Forskolin via a Cuprate Addition of Synthetic Dihydropyran-4-one, Tetrahedron Lett., 29, 2031–32 (1988).Google Scholar
  78. 73.
    Scherkenbeck, J., W. Dietrich, D. Muller, D. Bottger and P. Welzel: Forskolin Studies. Tetrahedron, 42, 5949–59 (1986).Google Scholar
  79. 74.
    Jenkins, P.R., K.A. Menear, P. Barraclaugh and M.S. Nobbs: An Intramolecular Diels-Alder Approach to Forskolin. J. Chem. Soc., Chem. Comm., 1984, 1423–24.Google Scholar
  80. 75.
    Magnus, P., C. Walker, P.R. Jenkins and K.A. Menear: Mechanistic Realization of an Apparently Non-stereospecific Intramolecular Diels-Alder Reaction. Tetrahedron Lett., 27, 651–54(1986).Google Scholar
  81. 76.
    Nicolaou, K.C. and W.S. Li: An Intramolecular Diels-Alder Strategy to Forskolin. J. Chem. Soc., Chem. Commun. 1985, 421.Google Scholar
  82. 77.
    Liu, Z.Y., X.-R. Zhou and Z.M. Wu: An Efficient Approach to the AB Ring System of Forskolin, J. Chem. Soc., Chem. Comm., 1987, 1868–69.Google Scholar
  83. 78.
    Kanematsu, K. and S. Nagashima, An Efficient Synthesis of a Key Intermediate of Forskolin, J. Chem. Soc., Chem. Comm., 1989, 1028–29.Google Scholar
  84. 79.
    Nagashima, S. and K. Kanematsu: A Synthesis of an Optically Active Forskolin Intermediate via Allenyl Ether Intramolecular Cycloaddition Strategy. Tetrahedron Asymmetry, 1, 743–49 (1990).Google Scholar
  85. 80.
    Trost, B.M. and R.C. Holcomb: An Unusual Stereochemical Directing Effect of a propargylic Oxygen Substituent on an Intramolecular Diels-Alder Reaction. Tetrahedron Lett. 30, 7157–60 (1989).Google Scholar
  86. 81.
    Tsang, R. and B. Fraser-Reid: Pyranose α-Enones Provide Ready Access to Functionalised trans-Decalins via bis-Annulated Pyranosides Obtained by Intramolecular Diels-Alder Reaction. A Key Intermediate of Forskolin. J. Org. Chem. 57, 1065–67 (1992).Google Scholar
  87. 82.
    Kulkarni, Y.S. and B.B. Snider: A Synthetic Approach to the AB Ring system of Forskolin. Org. Prep. Proced. Int., 18, 7–15 (1986).Google Scholar
  88. 83.
    Bold, G., S. Chao, R. Bhide, S.-H. Wu, D.V. Patel, C.J. Sih and C. Chidester: A Chiral Bicyclic Intermediate for the Synthesis of Forskolin. Tetrahedron Lett., 28, 1973–76 (1987).Google Scholar
  89. 84.
    Mukhopadhya, A., S.M. Ali, M. Husain, S.N. Suryawanshi and D.S. Bhakuni: Diels-Alder Reaction of in situ Generated 2-Methoxy-carbonyl-p-quinone with D- Glucose Based Dienes; A New Approach to Forskolin. Tetrahedron Lett., 30, 1853–56 (1989).Google Scholar
  90. 85.
    Bhakuni, D.S.: Synthetic Studies Towards Forskolin. Pure Appl. Chem., 62, 1389–92 (1990).Google Scholar
  91. 86.
    Beraldi, P.G., A. Barco, S. Benetti, G.P. Pollini, E. Polo and D. Simoni: The Intramolecular Nitrile Oxide Cycloaddition Route to Forskolin J. Chem. Soc., Chem. Commun. 1986, 757–58.Google Scholar
  92. 87.
    Beraldi, P.G., A. Barco, S. Benetti, V. Ferretti, G.P. Pollini, E. Polo and V. Zanirato: Synthetic Studies Towards Forskolin. Tetrahedron, 45, 1517–32 (1989).Google Scholar
  93. 88.
    Kozikowski, A.P., S.H. Jung and J.P. Springer: A [(4 + 2) + (3 + 2)] Approach to a Forskolin Intermediate: A Further Understanding of n - Facial Selection in Diels- Alder Reactions. J. Chem. Soc., Chem. Comm., 1988, 167–69.Google Scholar
  94. 89.
    Hutchinson, J.H., G. Pattenden and P.L. Myers. Tandem Radical Cyclization - Intramolecular Mukaiyama Aldolisation Approach to Forskolin. Tetrahedron Lett., 28, 1313–16 (1987).Google Scholar
  95. 90.
    Begley, M.J., H. Bhandal, J.H. Hutchinson and G. Pattenden: Dichotomous Reactivity in Stannane and Cobalt Mediated Radical Cyclization. Tetrahedron Lett., 28, 1317–20 (1987).Google Scholar
  96. 91.
    Begley, M.J., D.R. Cheshire, T. Harrison, J.H. Hutchinson, P.L. Myers and G. Pattenden: A New Synthetic Route to (±) Forskolin. Tetrahedron, 45, 5215–46 (1989).Google Scholar
  97. 92.
    Koft, E.R., A.S. Kotnis and T.A. Broadbent: Synthesis of a Potential Forskolin A-B Ring Precursor by Tandem Michael-Aldol Reactions. Tetrahedron Lett., 28, 2799–2800 (1987).Google Scholar
  98. 93.
    Li, T.T. and Y.-L. Wu: An Approach to Forskolin by an Efficient Synthesis of a Tricyclic Lactone Intermediate. Tetrahedron Lett., 29, 4039–40 (1988).Google Scholar
  99. 94.
    Colombo, M.I., J. Zinczuk, J.A. Bacigaluppo, C. Somoza and E.A. Ruveda: Synthesis of Ziegler Key Intermediate and Related Precursors for the Synthesis of Forskolin and Erigerol. J. Org. Chem., 58, 5631–39 (1990).Google Scholar
  100. 95.
    Somoza, C., J. Darias and E.A. Ruveda: Intramolecular Michael-Aldol Condensation Approach to the Construction of Advanced Intermediates in the Synthesis of Forskolin. J. Org. Chem., 54, 1539–43 (1989).Google Scholar
  101. 96.
    Venkataraman, H. and J.K. Cha: A Formal Synthesis of Forskolin: An Electrocyc- lization Approach. J. Org. Chem., 54, 2505–6 (1989).Google Scholar
  102. 97.
    Leclaire, M. and J.Y. Lallemand: Simple Access to a Forskolin Precursor. Tetrahedron Lett., 30, 6331–34 (1989).Google Scholar
  103. 98.
    Nicolaou, K.C., S. Kubota and W.S. Li: A Synthetic Route to Forskolin. J. Chem. Soc., Chem. Comm., 1989, 512–14.Google Scholar
  104. 99.
    McMurry, J.E. and M.D. Erion: Stereoselective Total Synthesis of the Complement Inhibitor K-76. J. Am. Chem. Soc., 107, 2712–20 (1985).Google Scholar
  105. 100. a)
    Neunert, D., H. Klein and P. Welzel: Forskolin, Some Studies on Ring B Forming Reactions. Tetrahedron, 45, 661–72 (1989).Google Scholar
  106. b).
    Liu, Z. and J. Yang: Synthesis of Methyl ∆7-(lβ, 4aβ 8aβ)-Octahydro-5,5,8a- trimethyl-2-oxonaphthalene-carboxylate by Allylic Cation Promoted Cyclization: Synth. Commun., 17, 1617–28 (1987).Google Scholar
  107. 101.
    Oplinger, J.A. and L.A. Paquette: Synthesis of Forskolin Skeleton via Anionic Oxy-Cope rearrangement. Tetrahedron Lett., 28, 5441–44 (1987).Google Scholar
  108. 102.
    Paquette, L.A. and J.A. Oplinger: Limitations in the Application of Anionic Oxy- Cope Sigmatropy to Elaboration of the Forskolin Nucleus. Tetrahedron, 45, 107–24 (1989).Google Scholar
  109. 103.
    Scherkenbeck, J., M. Barth, U. Thiel, K.-H. Mitten, F. Heinemann and P. Welzel: Model Studies Directed Towards Forskolin: Synthesis of a Tricyclic Model Compound from Farnesol. Tetrahedron, 44, 6325–36 (1988).Google Scholar
  110. 104.
    Ziegler, F.E., B.H. Jaynes and M.T. Saindane: A C6, C7,-Oxygen Functionalized Intermediate for the Synthesis of Forskolin: Stereochemical Control in an Intramolecular Diels-Alder Reaction. Tetrahedron Lett., 26, 3307–10 (1985).Google Scholar
  111. 105.
    Ziegler, F.E., B.H. Jaynes and M.T. Saindane: A Synthetic Route to Forskolin. J. Am. Chem. Soc., 109, 8115–16 (1987).Google Scholar
  112. 106.
    Hashimoto, S., S. Sakata, M. Sonegawa and S. Ikegami: A Total Synthesis of (±)-Forskolin. J. Am. Chem. Soc., 110, 3670–72 (1988).Google Scholar
  113. 107.
    Corey, E.J., P. Da Silva Jardine and J.C. Rohloff: Total Synthesis of (±)- Forskolin. J. Am. Chem. Soc., 110, 3672–73 (1988).Google Scholar
  114. 108.
    Corey, E.J. and P. Da Silva Jardine: A Short and Efficient Enantioselective Route to a Key Intermediate for the Total Synthesis of Forskolin. Tetrahedron Lett., 30, 7297–7300 (1989).Google Scholar
  115. 109.
    Corey, E.J., R.K. Bakshi and S. Shibata: High Enantioselective Borane Reaction of Ketones Catalyzed by Chiral Oxazaborolidene Mechanism and Synthetic Applications. J. Am. Chem. Soc., 109, 5551–53 (1987).Google Scholar
  116. 110. a)
    Corey, E.J., P. Da Silva Jardine and T. Mohri: Enantioselective Route to a Key intermediate in the Total Synthesis of Forskolin,. Tetrahedron Lett., 29, 6409–12 (1988).Google Scholar
  117. b).
    Hayashi, Y. and K. Narasaka: Asymmetric Reduction of Ketones and Total Synthesis of Forskolin. Kagaku (Kyoto), 43, 700–1, (1988).Google Scholar
  118. 111.
    Metzger, H. and E. Lindner: Forskolin, a Novel Adenylate Cyclase Activator. IRCS Med. Sci. Biochem., 9, 99 (1981).Google Scholar
  119. 112.
    Seamon, K.B., W. Padgett and J.W. Daly: Forskolin - Unique Diterpene Activator of Adenylate Cyclase in Membranes and in Intact Cells. Proc. Natl. Acad. Sci. USA, 78, 3363–67 (1981).Google Scholar
  120. 113.
    Khanum, A. and M.L. Dufau: Inhibitory Action of Forskolin on Adenylate Cyclase Activity and Cyclic AMP Generation. J. Biol. Chem., 261, 11456–9 (1986).Google Scholar
  121. 114.
    Seamon, K.B.: Forskolin and Adenylate Cyclase. 1st Atlas Sci. Pharmacol., 1, 250–3 (1987), Chem. Abstr. 108:87421h.Google Scholar
  122. 115.
    Lindner, E., A.N. Dohadwalla and B.K. Battacharya: Positive Inotropic and Blood Pressure Lowering Activity of a Diterpene Derivative Isolated from Coleus forskohlii, Forskolin. Arzneim. Forsch., 28, 284–89 (1978).Google Scholar
  123. 116.
    Dubey, M.P., R.C. Shrimal, S. Nityanand and B.N. Dhawan: Pharmacological Studies on Coleonol, a Hypertensive Diterpene form Coleus forskohlü. J. Ethnophar- macol., 3, 1–13 (1981).Google Scholar
  124. 117.
    Lindner, E. and H. Metzger: The Action of Forskolin on Muscle Cells is Modified by Hormones, Calcium ions and Calcium Antagonists. Arzneim. Forsch., 33, 1436–41 (1983).Google Scholar
  125. 118.
    Adnot, S., M. Desmier, N. Ferry, J. Hanoune and T. Sevenet: Forskolin, a Powerful Inhibitor of Human Platelet Aggregation. Biochem. Pharmacol., 31, 4071–74 (1982).Google Scholar
  126. 119.
    Agarwal, K.C. and R.E. Parks: Synergistic Inhibition of Platelet Aggregation by Forskolin plus PGE1, or 2-Fluoroadenosine: Effects of 2′,5′-Dideoxyadenosine and 5′- Methylthioadenosine. Biochem. Pharmacol., 31, 3713–16 (1982).Google Scholar
  127. 120.
    Siegl, A.M., J.W. Daly and J.B. Smith: Inhibition of Aggregation and Stimulation of Cyclic AMP Generation in Intact Human Platelets by the Diterpene Forskolin. Mol. Pharmacol., 21, 680–87 (1982).Google Scholar
  128. 121.
    Siegl, A.M. and J.W. Daly: Receptor (Norepinephrine), P-Site (2′,5′-Dideoxy- adenosine) and Calcium Mediated Inhibition of Prostaglandin and Forskolin-Activa- ted Cyclic AMP Systems in Human Platelets. J. Cyc. Nucl. Proc. Phos. Res. 10, 229–46(1985).Google Scholar
  129. 122.
    Metzger, H. and E. Lindner: The Positive Inotropic Activating Forskolin, a Potent Adenylate Cyclase Activator. Arzneim. Forsch., 31, 1248–50 (1981).Google Scholar
  130. 123.
    Caprioli, J. and M. Sears: Forskolin Lowers Intraocular Pressure in Rabbits, Monkeys, and Man. Lancet, 1, 958–60 (1983).Google Scholar
  131. 124.
    Caprioli, J. and M. Sears: Combined Effect of Forskolin and Acetazolamide on Intraocular Pressure and Aqueous Flow in Rabbit Eyes. Exp. Eye Res., 39, 47–50 (1984).Google Scholar
  132. 125.
    Caprioli, J. and M. Sears: The Adenylate Cyclase Receptor Complex and Aqueous Humor Formation. Yale J. Biol. Med., 57, 283–300 (1984).Google Scholar
  133. 126.
    Caprioli, J., M. Sears, L. Bausher, D. Gregory and A. Mead: Forskolin Lowers Intraocular Pressure by Reducing Aqueous Inflow. Invest. Ophthalmol. Vis. Sci., 25, 268–77 (1984).Google Scholar
  134. 127.
    Bartels, S.P., S.R. Lee and A.H. Neufeld: Forskolin Stimulates Cyclic AMP Synthesis, Lowers Intraocular Pressure and Increases Outflow Facility in Rabbits. Curr. Eye Res., 2, 673–81 (1983).Google Scholar
  135. 128.
    Lee, P.Y., S.M. Podos, T. Mittang and C. Severin: Effect of Topically Applied Forskolin on Aqueous Humor Dynamics in Cynomolgus Monkey. Invest. Ophthalmol. Vis. Sci., 25, 1206 (1984).Google Scholar
  136. 129.
    Potter, D.E., J.A. Burke and J.R. Temple: Forskolin Suppreses Sympathetic Neuron Function and Causes Ocular Hypotension. Currr. Eye Res., 4, 87–96 (1985).Google Scholar
  137. 130.
    Smith, B.R., R.N. Gaster, I.H. Leopold and L.D. Zeleznick: Forskolin, a Potent Adenylate Cyclase Activator, Lowers Rabbit Intraocular Pressure. Arch. Ophthalmol., 102, 146–48 (1984).Google Scholar
  138. 131.
    Burka, J.F.: Inhibition of Antigen and Calcium Ionophore A 23187 Induced Contractions of Guinea Pig Airways by Isoprenaline and Forskolin. Can. J. Physiol Pharmacol., 61,581–89 (1983).Google Scholar
  139. 132.
    Burka, J.F.: Effects of Selected Bronchodilators and Antigen Induced and A 23187- Induced Contraction of Guinea Pig Trachea. J. Pharmacol. Exp. Ther., 255, 427–35 (1983).Google Scholar
  140. 133.
    Lichey, J., T. Friedrich, M. Priesnitz, G. Biamino, P. Usinger and H. Huckauf: Effect of Forskolin on Methacholine-Induced Bronchoconstriction in Extrinsic Asthmatics. Lancet, 2, 167 (1984).Google Scholar
  141. 134.
    Kreutner, W., R.W. Chapman, A. Gulbenkian and S. Tozzi: Bronchodilator and Antiallergic Activity of Forskolin. Eur. J. Pharmacol., 111, 1–8 (1985).Google Scholar
  142. 135.
    Chang, J., J.M. Hand, S. Schwalm, A. Dervinis and A.J. Lewis: Bronchodilating Activity of Forskolin in vitro and in vivo. Eur. J. Pharmacol., 101, 271–74 (1984).Google Scholar
  143. 136.
    Joost, H.G., A.D. Habberfield, I.A. Simpson, A. Laurenza and K.B. Seamon: Activation of Adenylate Cyclase and Inhibition of Glucose Transport in Rat Adipocytes by Forskolin Analogs: Structural Determinants for Distinct Sites of Action. Mol. Pharmacol., 33, 449–53 (1988).Google Scholar
  144. 137.
    Kashiwagi, A., T.P. Huecksteadt and J.E. Foley: The Regulation of Glucose Transport by cAMP Stimulators via Three Different Mechanisms in Rat and Human Adipocytes. J. Biol. Chem., 258, 13685–92 (1983).Google Scholar
  145. 138.
    Sergeant, S. and H.D. Kim: Inhibition of 3-O-Methylglucose Transport in Human Erythrocytes by Forskolin. J. Biol. Chem., 260, 14677–82 (1985).Google Scholar
  146. 139.
    Kim, H.D., S. Seargeant and S.D. Shukla: Glucose Transport in Human Platelets and Its Inhibition by Forskolin. J. Pharmacol. Exp. Ther., 236, 585–9 (1986).Google Scholar
  147. 140.
    Joost, H.G. and H.J. Steinfelder: Forskolin Inhibits Insulin Stimulated Glucose Transport in Rat Adipocyte Cells by a Direct Interaction with the Glucose Transporter. Mol. Pharmacol., 31, 279–83 (1987).Google Scholar
  148. 141.
    Klip, A., T. Ramlal, A.G. Douen, P.J. Bilan and K.L. Skorecki: Inhibition by Forskolin of Insulin Stimulated Glucose Transport in L6 Muscle Cells. J. Bio. Chem., 265, 1023–9 (1988).Google Scholar
  149. 142.
    Wagoner, P.K. and B.S. Pallotta: Modulation of Acetylcholine Receptor De- sensitization by Forskolin is Independent of cAMP. Science, 240, 1655–57 (1988).Google Scholar
  150. 143.
    White, M.M.: Forskolin Alters Acetylcholine Receptor Gating by Mechanism Independent of Adenylate Cyclase. Mol. Pharmacol., 34, 427–30 (1988).Google Scholar
  151. 144.
    Haeggblad, J., H. Eriksson, B. Hedlund and E. Heilbronn: Forskolin Blocks Carbachol-Mediated Ion-Permeability of Chick Myotube Nicotinic Receptors and Inhibits Binding of 3H-Phencyclidene to Terpedo Microsac Nicotinic Receptors. Naunyn-Schmiedeberg’s Arch. Pharmacol., 336, 381–6 (1987).Google Scholar
  152. 145.
    McHugh, E.M. and R.M. McGee Jr.: Direct Anesthetic Like Effect of Forskolin on the Nicotinic Acetylcholine Receptors of PC 12 Cells. J. Biol. Chem., 261, 3103–6 (1986).Google Scholar
  153. 146.
    Middeton, P., F. Jaramillo and S.M. Schuetze: Forskolin Increases the Rate of Acetylcholine Receptor Desensitization at Rat Soleus Endplates. Proc. Natl. Acad. Sci. USA, 83, 4967–71 (1986).Google Scholar
  154. 147.
    Allgaier, C., B.K. Choi and G. Hertting: Forskolin Modulates Acetylcholine Release in the Hippocampus Independently of Adenylate Cyclase Activation. Eur. J. Pharmacol., 181, 279–82 (1990).Google Scholar
  155. 148.
    Albuquerque, E.X., S.S. Deshpande, Y. Aracava, M. Alkondon and J.W. Daly: A Possible Involvement of Cyclic AMP in the Expression of Desensitization of the Acetyl Choline Receptor, A Study with Forskolin and Its Analogues. FEBS Letters, 199, 113–20 (1986).Google Scholar
  156. 149.
    Hoshi, T., S.S. Garber and R.W. Aldrich: Effect of Forskolin on Voltage-Gated Potassium Channels is Independent of Adenylate Cyclase Activation. Science, 240, 1652–55 (1988).Google Scholar
  157. 150.
    Galietta, L.J.V., A. Rasola, V. Bavone, D.C. Gruenert and G. Romeo: Forskolin and Verapamil Sensitive Potassium Current in Human Tracheal Cells, Biochem. Biophys. Res. Commun. 179, 1155–60 (1991).Google Scholar
  158. 151.
    Harris-Warrick, R.M.: Forskolin Reduces a Transient Potassium Current in Lobster Neurons by a cAMP Independent Mechanism. Brain Res. 489, 59–66 (1989).Google Scholar
  159. 152.
    Garber, S.S., T.A. Hoshi and R.W. Aldrich: Interaction of Forskolin with Voltage Gated Potassium Channels in PC 12 Cells. J. Neurosci., 10, 3361–8 (1990).Google Scholar
  160. 153.
    Krause, D., S.C. Lee and C. Deutsch: Forskolin Effects on Village Gated Potassium Conductance of Human T Cells. Pfluegers Arch., 412, 133–40 (1988).Google Scholar
  161. 154.
    Coombs, J. and S. Thompson: Forskolin’s Effect on Transient Potassium Current in Nudibrach Neurons is not Reproduced by cAMP. J. Neurosci., 7, 443–52 (1987).Google Scholar
  162. 155.
    Zunkler, B.J., G. Trube and T. Ohno-Shosaku: Forskolin Induced Block of Delayed Rectifying Potassium Channels in Pancreatic ft Cells is not Mediated by AMP. Pfluegers Arch., 411, 613–19 (1988).Google Scholar
  163. 156.
    Watanabe, K. and M. Gola: Forskolin Interaction with Voltage Dependent Potassium Channels in Helix is not Mediated by Cyclic Nucleotides. Neurosci. Letters, 78, 211–16 (1987).Google Scholar
  164. 157.
    Margiotta, M., C. Ardizzone and C. Lippe: Effects of Forskolin on Active Sodium Transport and Permeability of Isolated Bufo bufo Skin. Boll. Soc. Ital. Biol. Sper., 62, 729–35 (1986), Chem. Abstr. 105:127435n.Google Scholar
  165. 158.
    Ardizzone, C., M. Margiotta and C. Lippe: Action of Forskolin on Non-Electrolyte Permeability Across the Frog Skin as Compared to that of Vasopressin and Isoprena- line. Arch. Int. Physiol. Biochem., 95, 105–12 (1987).Google Scholar
  166. 159.
    Boutjdir, M., P.F. Mery, R. Hanf, A. Shrier and R. Fischmeister: High Affinity Forskolin Inhibition of L Type Calcium Current in Cardiac Cells. Mol. Pharmacol., 38, 758–65 (1990).Google Scholar
  167. 160.
    Dreux, C. and V. Imhoff: Forskolin, a Tool for Rat Parotid Secretion Studies. Calcium-45-effiux is not Related to cAMP. Am. J. Physiol., 251, C754-C762 (1986).Google Scholar
  168. 161.
    Yanagibashi, K., V. Papadopoulos, E. Masaki, T. Iwaki, M. Kawamura and P.E. Hall: Forskolin Activates Voltage Dependent Calcium Channels in Bovine but not in Rat Fasciculata Cells. Endocrinology (Baltimore), 124, 2383–91 (1989).Google Scholar
  169. 162.
    Filippov, A.K. and V.L. Porotikov: Effect of Forskolin on Action Potential Slow Inward Current and Tension of Frog Artial Fibers. J. Physiol. (Paris), 80, 163–7 (1985).Google Scholar
  170. 163.
    Morita, K., T. Dohi, S. Kitayama: Y. Koyama and A. Tsujimoto: Stimulation- evoked Calcium Fluxes in Cultured Bovine Adrenal Chromaffin Cells are Enhanced by Forskolin. J. Neurochem., 48, 248–52 (1987).Google Scholar
  171. 164.
    Hartzell, H.C. and R. Fischmeister: Effect of Forskolin and Acetylcholine on Calcium Current in Single Isolated Cardiac Myocytes. Mol. Pharmacol., 32, 639–45 (1987).Google Scholar
  172. 165.
    Clement, E., H. Scheer, D. Zacchetti, C. Fosolate, T. Pozzan and J. Meldolesi: Receptor Activated Calcium Influx, Two Independently Regulated Mechanisms of Influx Stimulation Coexist in Neurosecretary PC 12 Cells. J. Biol. Chem., 267, 2164–72 (1992).Google Scholar
  173. 166.
    Heuschneider, G. and R.D. Schwartz: cAMP and Forskolin Decrease γ-Aminobu- tyric Acid Gated Chloride Flux in Rat Brain Synaptoneurosomes. Proc. Natl. Acad. Sei. USA, 86, 2938–42 (1989).Google Scholar
  174. 167. a)
    Dreher, R.M. and H.E. Knoell: Stimulation of Epithelial Cell Proliferation by Forskolin. Ger. Offen. D.E., 3,716,907. (CI. C12 N5/02) 01 Dec 1988, Chem. Abstr., 111 PI70652s.Google Scholar
  175. b).
    Artuc, M., C. Reinhold and H. Kappus: Effect of Forskolin on Growth of Human Epidermal Keratinocytes in Culture, Med. Sei. Res., 16, 1027–8 (1988).Google Scholar
  176. 168.
    Szabo, M., N.E. Staib, B.J. Collins, and L. Cuttler: Biphasic Action of Forskolin on Growth Hormone and Prolactin Release by Rat Anterior Pituitary Cells in vitro. Endocrinology (Baltimore), 127, 1811–17 (1990).Google Scholar
  177. 169.
    Scheuermann, S.E.: Forskolin as Growth Promoter for Live-stock, Ger. Offen D.E. 3,815,718 (CI. A 23 K 1/16), 16 Nov. 1989, Chem. Abstr. 112:197062g.Google Scholar
  178. 170.
    Thulesius, O. and J. Christenson: Forskolin Treated Antithrombogenic Surgical Implants. Eur. Pat. Appl. Ep. 308,802 (CI A 61 L 33/00), 29 March 1989. Chem. Abstr., 112 P. 62684r.Google Scholar
  179. 171.
    Sugiyama, K.T., F.A. Koji and M. Egawa: Forskolin Containing Composition for Hair Graying Suppression. Eur. Pat. Appl. Ep. 293, 837 (CI. A 62 K7/06) Dec. 1988, Chem. Abstr. 109:102499x.Google Scholar
  180. 172.
    Lal, B., J. Blumbach, A.N. Dohadwalla and N.J. DeSouza: Pharmaceutical Compositions Comprising Labdane Diterpenoid Derivatives and Pyrimido-(6, la)- isoquinoline-4-one derivatives and their Use. Eur. Pat. Appl. Ep. 370, 379 (CI A 61 K7/06) 30 May 1990, Chem. Abstr., 114, 234867n.Google Scholar
  181. 173.
    Seamon, K.B., J.W. Daly, H. Metzger, N.J. DeSouza and J. Reden: Structure Activity Relationships for Activation of Adenylate Cyclase by the Diterpene Forskolin and Its Derivatives J. Med. Chem., 26, 436–39 (1983).Google Scholar
  182. 174.
    Laurenza, A., Y. Khandelwal, N.J. DeSouza: R.H. Rupp, H. Metzger and K.B. Seamon: Stimulation of Adenylate Cyclase by Water Soluble Analogues of Forskolin. Mol. Pharmacol., 32, 133–9 (1987).Google Scholar
  183. 175. a)
    Tatee, T., T. Takahira, K. Yamashita, M. Sakurai, A. Shiozawa, K. Narita and H. Uchida: Preparation of Novel Forskolin Derivatives as Cardiotonic and Hypotensive Agents and as Adenylate Cyclase Stimulants. Eur. Pat. Appl. EP 222, 413 (CI C07D 311/92) 20 May 1987, Chem. Abstr., 108:131427r.Google Scholar
  184. b).
    Tachie, T., T. Takahira, A. Fujita and F. Ishikawa: Forskolin Derivatives as Antihypertensive and Adenylate Cyclase Activitors. Jpn Kokai Tokyo Koho, Jp 01 09, 986 (89 09, 986) (CI C07D 311/92) 13 Jan 1989, Chem. Abstr. 111: 134567j.Google Scholar
  185. 176.
    Hoechst, A.-G.: Process for the Preparation of 7-Acyloxy-6-(aminoacyloxy)- polyoxylabdenones and their Use as Antihypertensives. Austrian AT 389,114 (CI. C07D311/92) 25, Oct, 1989., Chem. Abstr. 112:235649p.Google Scholar
  186. 177.
    Kosley, R.W. Jr. and R.J. Cherill: Preparation of l-(Aminoacyloxy)-8,13-epoxy- labd-14en-l 1-ones for Treatment of Glaucoma. U.S. US 4,639,446 (CL 514–222; A 61 K31/35), 27 Jan 1987, Chem Abstr. 111: 134568k.Google Scholar
  187. 178.
    Dohadwalla, A.N., S.S. Mandrekar, N.K. Dadkar, Y. Khandelwal, R.H. Rupp and N.J. DeSouza: Oxygenated Labdane derivatives for Treatment of Antiinflammatory Diseases. U.S. US 4,724,238 (CI. 514–475; A61k31/35), 09 Feb. 1988, Chem. Abstr. 110, 147859k.Google Scholar

Adenylate Cyclase and Protein Kinase

  1. 1.
    Jones, S.B. and D.B. Bylund: Characterisation and Possible Mechanisms of α2- Adrenergic receptor-mediated Sensitization of Forskolin Stimulated Cyclic AMP Production in HT29 Cells, J. Biol. Chem. 263, 14236–44 (1988).Google Scholar
  2. 2.
    Jones, S.B. and D.B. Bylund: Effects of α2-Adrenergic Agonist Preincubation on Subsequent Forskolin-stimulated Adenylate Cyclase Activity and [3H]-Forskolin Binding in the membranes from HT 29 Cells. Biochem. Pharmacol., 40, 871–7 (1990).Google Scholar
  3. 3.
    Knopp, J., Z. Strakova and J. Brtko: Effect of Forskolin and Triiodothyronine on cAMP Production in Rat Thymocytes Endocrinol. Exp., 22, 29–34 (1988).Google Scholar
  4. 4.
    Anderson, R.J., R. Breckon and D. Colston: Regulation by Forskolin of Cyclic AMP Phosphodiesterase and Protein Kinase C Activity in LLC-PKj Cells. Biochem. J., 279, 23–7 (1991).Google Scholar
  5. 5.
    Chijiwa, T., A. Mishima, M. Hagiwara. M. Sano; K. Hayashi, T. Inoue, K. Naito, T. Toshioka and H. Hidaka: Inhibition of Forskolin Induced Neurite Outgrowth and Protein Phosphorylation by a newly Synthesised Selective Inhibitor of Cyclic AMP- Dependent Protein Kinase, N-[2(-p-Bromocinnamylamino) ethyl]-5-isoquinoline Sulfonamide (H-89) of PC 12D Pheochromocytoma Cells. J. Biol. Chem., 265, 5267–72 (1990).Google Scholar
  6. 6.
    Ho, A.K., C.L. Chik and D.C. Klein: Forskolin Stimulates Pinealocyte cGMP Accumulation, Dramatic Potentiation by an a-Adrenergic-[Ca2 +]-Mechanism Involving Protein Kinase C. FEBS Lett., 249, 207–12 (1989).Google Scholar
  7. 7.
    Ho, R.J., Q.H. Shi and J. Ruiz: Conditional Inhibition of Forskolin-Activated Adenylate Cyclase by Guanosine Diphosphate and Its Analog. Arch. Biochem. Biophys., 251, 148–55 (1986).Google Scholar
  8. 8.
    Gole, J.W.D., G.L. Orr and R.G.H. Downer: Forskolin Insensitive Adenylate Cyclase in the Cultured Cells of Choristoneura fumiferana (Insecta). Biochem Biophys. Res. Commun., 145, 1192–7 (1987).Google Scholar
  9. 9.
    Jackman G.P. and A. Bobik: Forskolin-Mediated Activation of Cardiac, Liver and Lung Adenylate Cyclase in the Rat. Relation to [3H]-Forskolin Binding Sites, Biochem. Pharmacol., 35, 2247–51 (1986).Google Scholar
  10. 10.
    Wright, M.S., B.J. Cook and G.M. Holman: Regulation of Adenylate Cyclase from Leucophea maderae by Calcium, Calmodulin and Forskolin, Comp. Biochem. Physiol. C. Comp. Pharmacol. Toxicol. 85C, 357–62 (1986).Google Scholar
  11. 11.
    Shi Q.H., J.A. Ruiz and R.J. Ho: Forms of Adenylate Cyclase, Activation and/or Potentiation by Forskolin, Arch. Biochem. Biophys., 251, 156–65 (1986).Google Scholar
  12. 12.
    Smigel M.D.: Purification of the Adenylate Cyclase. J. Biol. Chem., 261, 1976–82 (1986).Google Scholar
  13. 13.
    De Foresta, B., M. Rogard and J. Galley: Adenylate Cyclase of Bovine Adrenal Cortex Plasma Membranes, Divergence Between Corticotropin and Fluoride, Combined Effects with Forskolin FEBS Letters, 216, 107–12 (1987).Google Scholar
  14. 14.
    Nelson, C.A. and K.B. Seamon: Binding of [3H]-Forskolin to Solubilised Preparations of Adenylate Cyclase. Life Sci., 1988, 1375–83.Google Scholar

Blood Cells

  1. 15.
    De Chaffoy de Courcelles, D., P. Roevens and H. Van Belle: Prostagladin El5 and Forskolin Antagonise C-kinase Activation in the Human Platelet. Biochem, J., 244, 93–9 (1987).Google Scholar
  2. 16.
    Sannomiya, Y., N. Tatsumi and K. Okuda: Effects of Forskolin and Cilostazol on Colt Retraction. Biochem. Int., 17, 1059–70 (1988).Google Scholar
  3. 17.
    Siegl, A.M. and G. Moroff: Effects of Forskolin on the Maintenance of Platelet Properties During Storage. J. Lab. Clin. Med., 108, 354–9 (1986).Google Scholar
  4. 18.
    Agarwal, K.C., B.A. Ziclinski and R.S. Maitra: Significance of Plasma Adenosine in the Antiplatelet Activity of Forskolin: Potentiation by Dipyridamole and Dilazep. Thromb. Haemost., 61, 106–10 (1989).Google Scholar
  5. 19.
    Watanabe, Y. and K.H. Jakobs: Forskolin Sensitizes Human Platelet Adenylate Cyclase to Modulation of Substrate (Magnesium ATP) Affinity by Hormones. Biochem. J., 237, 273–6 (1986).Google Scholar
  6. 20.
    Mokhtari, A., K.C. Do and S. Harbon: Forskolin Alters Sensitivity of the cAMP Generating System to Stimulating as well as Inhibitory Agonists. A Study with Intact, Human Platelets and Guinea Pig Myometrium. Eur. J. Biochem., 176, 131–7 (1988).Google Scholar
  7. 21.
    Apitz, C.R. and J.E. Ajoene: The Antiplatelet Principle of Garlic Synergistically Potentiates The Antiaggregatory Action of Prostacyclin. Forskolin, Indomethacin and Dipyridamole on Human Platelet. Thromb. Res. 42, 303–11 (1986).Google Scholar
  8. 22.
    Gray, S.J. and S. Heptinstall: Interactions between Prostaglandin E2 and Inhibitors of Platelet Aggregation Which Act Through Cyclic AMP. Eur. J. Pharmacol., 194, 63–70 (1991).Google Scholar
  9. 23.
    Teng, C.M., M.L. Hung,T.F. Huang and C. Ouyang: Triwaglerin, a Potent Platelet Aggregation Inducer Purified from Trimeresurus wagleri Snake Venom. Biochem. Biophys. Acta, 992, 258–64 (1989).Google Scholar
  10. 24.
    Laurenza, A., D. Morris and K.B. Seamon: Irreversible Loss of [3H]-Forskolin Binding Sites in Human Platelets by 2-Haloacyl Analogs of Forskolin, Mol. Pharma- col., 37, 69–74 (1990).Google Scholar
  11. 25.
    Furui, H., K. Suzuki, K. Takagi and T. Satake: Effect of Colforsin (Forskolin) on Human Neutrophil Superoxide Production and Intracellular Calcium Mobilization. Clin. Exp. Pharmacol. Physiol., 16, 199–209 (1989).Google Scholar
  12. 26.
    Khan, M.M., A.C. Tran and K.M. Keaney: Forskolin and Prostaglandin E2 Regulate the Generation of Human Cytolytic T Lymphocytes. Immunopharmacology, 19, 151–61 (1990).Google Scholar
  13. 27.
    Griese, M., S. Griese and D. Reinhardt: Inhibitory Effects of Portussis Toxin on the cAMP Generating System in Human Mononuclear Leukocytes. Eur. J. Clin. Invest., 20, 317–22 (1990).Google Scholar
  14. 28.
    Menetski, J.P. and M. Gellert: Recombination Activity in Lymphoid Cell Lines is Increased by Agents that Elevate cAMP. Proc. Natl. Acad. Sei., USA, 87, 9324–8 (1990).Google Scholar
  15. 29.
    Hallek, M., T. Kamp, E. Haen U. Goehly, B. Emmerich and J. Remien: Reduced Responsiveness of Adenylate Cyclase to Forskolin in Human Lymphoma Cells. Biochem. Pharmacol, 42, 1329–34 (1991).Google Scholar
  16. 30.
    Webster, H.K., W.P. Wiesmann, G.S. Ward, B. Pempanich and C.S. Pavía: Reversible Defect in cAMP Metabolism in Lymphocytes in Malaria Infection. Immunopharmacology, 19, 169–75 (1990).Google Scholar
  17. 31.
    Ebstein, R.P., J. Mintzer, Y. Lipschitz, Z. Shemesh and J. Stessman: Hormone and Forskolin Stimulated Cyclic AMP Accumulation in Human Lymphocytes, Reliability of Longitudinal Time Measurement. Experientia, 42, 838–41 (1986).Google Scholar

Adipocytes and Lipolysis

  1. 32.
    Gonzalez-Nicolas, J., J. Jimenez, A. Page-Panueclas, M.T. Zabala and F.J. Moreno: Regulation of Lipid Metabolism by Dipyridamole and Adenosine Antagonists in Rat Adipocytes. Int. J. Biochem. 21, 883–8 (1989).Google Scholar
  2. 33.
    De Pergola, G., A. Holmang, J. Svedberg, R. Giorgino and P. Bjorntorp: Testosterone Treatment of Ovariectomized Rats: Effects on Lipolysis Regulation in Adipocytes. Acta Endocrinol, 123, 61–66 (1990).Google Scholar
  3. 34.
    Allen, D.O., B. Ahmed and K. Naseer: Relationships between Cyclic AMP Levels and Lipolysis in Fat Cells after Isoproterenol and Forskolin. J. Pharmacol, Exp. Ther. 238, 659–64 (1986).Google Scholar
  4. 35.
    Allen, D.O. and J.T. Quesenberry: Quantitative Differences in the Cyclic AMP Lipolysis Relationships for Isoproterenol and Forskolin. J. Pharmacol. Exp. Ther., 244, 852–8 (1988).Google Scholar
  5. 36.
    Lehmann, M. and J. Koolman: The Influence of Forskolin on the Metabolism of Ecdysone and 20-Hydroxyecdysone in Isolated Fat Body of the Blowfly, Calliphora vicina. Biol. Chem. Hoppe-Seyler, 367, 387–93 (1986).Google Scholar
  6. 37.
    Fatemi, S.H.: Evaluation of the Effects of Forskolin and the Antilipolytic Agents Insulin and Nicotinic Acid on Cyclic AMP Levels in Rat Epididymal Adipocytes. Biomed. Biochem. Acta, 45, 539–47 (1986).Google Scholar
  7. 38.
    Fatemi, S.H.: Interaction between Prostaglandin Ej and Forskolin in Modulation of Cyclic AMP Levels in Rat Epididymal Adipocytes. Prostaglandins Leukotrienes Med., 18, 151–61 (1985).Google Scholar

Heart

  1. 39.
    England, P.J. and M. Shahid: Effects of Forskolin on Contractile Responses and Protein Phosphorylation in the Isolated Perfused Rat Heart. Biochem. J., 246, 687–95 (1987).Google Scholar
  2. 40.
    Hisajima, H., T. Hama, K. Kurahashi, H. Usui and M. Fujiwara: Vasodilation Produced by Forskolin Compared with that Produced by Adenosine in Rabbit Coronary Artery. J Cardiovasc. Pharmacol, 8, 1262–7 (1986).Google Scholar
  3. 41.
    Antonov, A.S., M.E. Lukashev, Y.A. Romanov, V.A. Tkachuk, V.S. Repin and V.N. Smirnov: Morphological Alterations of Endothelial Cells from Human Aorta and Umbilical Vein Induced by Forskolin and Phorbol-12-myristate-13-acetate: A Synergistic Action of Adenylate Cyclase and Protein Kinase C Activators. Proc. Natl. Acad. Sci. USA; 83, 9704–8 (1986).Google Scholar
  4. 42.
    Hai, C.M. and R. Phair: Forskolin and Caffeine Induce Ca2+ Release from Intracellular Stores in Rabbit Aorta. Am. J. Physiol., 257, C413-C418 (1989).Google Scholar
  5. 43.
    McMahon, E.G. and R.J. Paul: Effects of Forskolin and Cyclic Nucleotides on Isometric Force in Rat Aorta. Am. J. Physiol., 250 C468-C473 (1986).Google Scholar
  6. 44.
    Buschmans, E., D.J. Hearse and A.S. Manning: Forskolin Effects on Cyclic AMP and Contractile Function in the Isolated Rat and Guinea Pig Heart. Can. J. Cardiol., 1, 385–94 (1985).Google Scholar
  7. 45.
    Jackman, G.P. and A. Bobik: Differential Forskolin Activation of Rat Heart and Lung Adenylate Cyclase, Dependence on Membrane Protein Interactions. Biochem. Pharmacol., 38, 1091–5 (1989).Google Scholar
  8. 46.
    Alam, S.Q., Y.F. Ren, and B.S. Alam: [3H]-Forskolin and [3H]-Dihydroaloprenolol Binding Sites and Adenylate Cyclase Activity in Heart of Rats Containing Different Oils. Lipids, 23, 207–13 (1988).Google Scholar
  9. 47.
    Vaden, S.L. and H.R. Adams: Ionotropic, Chronotropic and Coronary Vasodialator Potency of Forskolin. Eur. J. Pharmacol.,118, 131–7 (1985).Google Scholar
  10. 48.
    Hearse, D.J. and R. Zucchi: Forskolin and Myocardial Function in the Normal Ischemic and Perfused Rat Heart. Can. J. Cardiol., 2, 303–12 (1986).Google Scholar
  11. 49.
    Egan, T.M., D. Noble, S.J. Noble, T. Powell, V.M. Twist and K. Yamaoka: On the Mechanism of Isoprenaline and Forskolin Induced Depolarisation of Single Guinea Pig Ventricular Myocytes. J. Physiol., 405, 785 (1988).Google Scholar
  12. 50.
    Egan, T.M., D. Noble, S.J. Noble, T. Powell, V.M. Twist and K. Yamaoka: On the Mechanism of Isoprenaline and Forskolin Induced Depolarisation of Single Guinea Pig Ventricular Myocytes. J. Physiol., 400, 299–300 (1988).Google Scholar
  13. 51.
    West, G.A., G. Isenberg and L. Belardinelli: Antagonism of Forskolin Effects by Adenosine in Isolated Heart and Ventricular Myocytes. Am. J. Physiol., 250, H769–77 (1986).Google Scholar
  14. 52.
    Zalups, R.K. and S.S. Sheu: Effects of Forskolin on Intracellular Sodium Activity in Resting and Stimulated Cardiac Purkinge Fibre from Sheep. J. Mol. Cell. Cardiol., 19, 887–90 (1987).Google Scholar
  15. 53.
    Bowlling, N., V.L. Wyss, P.J. Gengo, B. Utterback, R.F. Kauffman and J.S. Hayes: Cardiac Inotropic Responses to Calcium and Forskolin are not Altered by Prolonged Isoproterenol Infusion. Eur.J. Pharmacol., 127,155–64 (1990).Google Scholar
  16. 54.
    Shuddy, R.E., C. Mak and M.R. Bristow: Comparative in vitro Myocardial Inotropic Effect and in vivo Hemodynamic Effect of Forskolin and Isoproterenol in Young Lambs. Pediatr. Res. 25, 580–4 (1989).Google Scholar
  17. 55.
    Scarpace, P.J.: Forskolin Activation of Adenylate Cyclase in Rat Myocardium with Age, Effects of Guanine Nucleotide Analogues. Mech. Ageing Dev., 52, 169–78 (1990).Google Scholar
  18. 56.
    Maclid, K.M.: The Influence of Neat Nitroprusside on Positive Inotropic Responses of Rabbit Popillary Muscle to Forskolin. Proc. West. Pharmacol. Soc., 29, 81–3 (1986).Google Scholar
  19. 57.
    Brown, L., C. Sernia, R. Newlirg and P. Kletchev: Comparison of Inotropic and Chronotropic Responses in Rat Isolated Atria and Ventricles. Clin. Exp. Pharmacol. Physiol. 18, 753–60 (1991).Google Scholar
  20. 58.
    Ibayashl S., A.C. Ngai, J.R. Meno and H.R. Winn: Effects of Tropical Adenosine Analogs and Forskolin on Rat Pial Arterioles in vivo. J. Cerb., Blood flow Metab., 11, 72–6 (1991).Google Scholar
  21. 59.
    Lindgren, S. and K.E. Andersson: Comparison of the Effects of Milrinone and OPC 3911 with those of Isoprenaline, Forskolin and Dibutyryl-cAMP in Rat Aorta. Gen. Pharmacol, 22,617–24(1991).Google Scholar
  22. 60.
    Williams, J.L. Jr. and K.V. Malik: Forskolin stimulates prostaglandin Synthesis in Rabbit Heart by a Mechanism that Requires Calcium and is Independent of Cyclic AMP, Circ. Res., 67, 1247–56 (1990).Google Scholar
  23. 61.
    Gauthier, C. and H. Soustre: Forskolin Effects on Slow Inward Current and Phasic Tension of Frog Atrial Fiber Modulation of Adenosine and Phosphodiesterase Inhibitors, Eur. J. Pharmacol, Mol. Pharmacol. Sect., 225, 129–35 (1992).Google Scholar
  24. 62.
    Sonokl H.V. and Y. Masuo: Effects of Forskolin on Canine Congestive Heart Failure. Nippon Yakurigaku Zasshi., 88, 389–94 (1986).Google Scholar
  25. 63.
    Lemmer, B., H. Bissenger and P.H. Lary: Effects of Forskolin on cAMP Levels in Rat Heart at Different Times of Day. IRCS Med. Sci., 14, 1103 (1986).Google Scholar
  26. 64.
    Vegesna, R.V.K. and J. Diamond: Effects of Prostaglandin E1, Isoproterenol and Forskolin on cAMP Levels and Tension in Rabbit Aortic Rings. Life Sci., 39, 303–11 (1986).Google Scholar
  27. 65.
    Vegesna, R.V.K. and J. Diamond: Activation of cAMP Dependent Protein Kinase in Rabbit Aortic Rings by Prostaglandin E,, and Forskolin is Accompanied by Contraction and Relaxation, Respectively. Proc. West. Pharmacol. Soc., 29, 39–43 (1986).Google Scholar
  28. 66.
    Hatjis, C.G.: Forskolin, Unique Diterpene Activator of Adenylate Cyclase in Pregnant and Nonpregnant Guinea Pig Myometrial Membranes. Am. J. Obstet. Gynecol., 155, 1202–8 (1986).Google Scholar
  29. 67.
    Hatjis, C.G.: Forskolin-stimulated Adenylate Cyclase Activity in Fetal and Adult Rabbit Myocordial Membranes. Am. J. Obstet. Gynecol., 155, 1326–31 (1986).Google Scholar
  30. 68.
    Hon, M., Y. Koretsume, T. Kagiya, Y. Watnabe, K. Iwakura, K. Iwal, A. Kitaba- take, H. Yoshide, M. Inoue and T. Kamada: An Increase in Myocordial (3- Adrenoceptors to Compensate for Postischemic Dysfunction Following Coronary Microembolization in Dogs, Cardiovasc. Res., 23, 424–31 (1989).Google Scholar

Adenylate Cyclase and Protein Kinase

  1. 69.
    Choquet, A., R. Magous, J.C. Galleyrand and J.P. Bali: Is Forskolin a True Stimulant of Gastric acid Secretion. C.R. Seances Soc., Biol. Sec, Fil., 182, 335–43 (1988).Google Scholar
  2. 70.
    Coruzzi, G., M. Adami and G. Bertaccini: Effect of Forskolin on Gastric Acid Secretion ‘in vitro’ Interaction with Different Secretagogues, Gen. Pharmacol., 19, 767–70 (1988).Google Scholar
  3. 71.
    Fong, J.C., L.T. Ho and F.F. Wang: Forskolin Stimulation of Pepsinogen Secretion from Frog Esophageal Mucosa is Partly Mediated by Intrinsic Cholinergic Neurons. Biochem. Int., 19, 1165–72 (1989).Google Scholar
  4. 72.
    Ren, Y.F., S.N. Ahmed, B.S. Alam and S.Q. Alam: [3H]-Forskolin Binding Sites in Rat Submandibular Salivary glands. Arch. Oral. Biol., 33, 779–82 (1988).Google Scholar
  5. 73.
    Murata, K and Y. Ogura: Effect of Isoproterenol and Forskolin on Amylase Release from Parotid Tissue after Chronic Pilocarpine Administration in Rats Following Ligation removal. Jpn. J. Pharmacol., 45, 545–9 (1987).Google Scholar
  6. 74.
    Herling, A.W. and M. Bickel: The Stimulatory Effect of Forskolin on Gastric Acid Secretions in Rats. Eur. J. Pharmacol., 125, 233–9 (1986).Google Scholar
  7. 75.
    Poat, J.A., H.E. Cripps, R. Cowburn and L.L. Iverson: Synergistic Interactions Between Forskolin, Isoprenaline and Substance P as Secretagogues in Rat Parotid Glands. Eur. J. Pharmacol., 144, 317–26 (1987).Google Scholar
  8. 76.
    Wilson, G.A. and I.H.M. Main: Stimulatory Effect of Forskolin Gastric Acid Secretion in the Rat. in vitro andin vivo, Eur. J Pharmacol.,123, 371–7 (1986).Google Scholar
  9. 77.
    Takuma, T.: Propranolol Inhibits Cyclic AMP Accumulation and Amylase Secretion in Parotid Acinar Cells Stimulated by Isobutylmethylxanthine and Forskolin. Bio- chem. Biophys. Acta, 1052, 461–6 (1990)Google Scholar
  10. 78.
    Ishikawa, T., H. Omotani, Y. Nezani and T. Eto: Effects of Cimetidine and Ranitidine in Forskolin Stimulated Acid Secretion in Isolated Parietal Cells. Ther. Res., 11, (Suppl 1), 120–3 (1990).Google Scholar
  11. 79.
    Watson, E.L. and K.L. Jacobson: Forskolin Activation of Adenylate Cyclase in Mouse Parotid Membranes. Life Sei., 39, 693–7 (1986).Google Scholar

Eye

  1. 80.
    Shibata, T. and H. Mishimo: Ocular Pigmentation and Intraocular Pressure Response to Forskolin. Curr. Eye Res., 7, 667–74 (1988).Google Scholar
  2. 81.
    Zarbin, M.A., J. Baraban and P. Worley: Autoradiographic Distribution of Forskolin and Phorbol Ester Binding Sites in the Retina. Brain Res., 497, 334–43 (1989).Google Scholar
  3. 82.
    Saettone, M.F., S. Burgalassi and B.G. Iannaccini: Preparation and Evaluation in Rabbits of Topical Solution containing Forskolin. J. Ocul. Pharmacol., 5, 111–18 (1989).Google Scholar
  4. 83.
    Brubaker, R.F., K.H. Carlson, H. Keith, J. Kullerstrand and J.W. Maclaren: Topical Forskolin (Colforsin) and Aqueous Flow in Humans. Arch. Ophthalmol, 105, 637–41 (1987).Google Scholar
  5. 84.
    Chu, J.C. and A. Candio: Effects of Forskolin, Prostaglandin F and Barium (2 +) Short Circuit Current of the Isolated Rabbit Iris Ciliary Body. Curr. Eye Res., 5, 511–16 (1986).Google Scholar
  6. 85.
    Goldman, H.E., P. Mellorga, D.J. Pettibone and M.F. Sugrue: Characterization of [3H]-Forskolin Binding Sites in the Iris Ciliary Body of the Albino Rabbit. Life Sei., 42, 1307–14 (1988).Google Scholar
  7. 86.
    Jarkman, S.: Effects of Low Doses of Forskolin on the C-Wave of the Direct Current Electroretiriogram and on the Standing Potential of Eye. Doc. Ophthalmol., 67, 305–14 (1987).Google Scholar
  8. 87.
    Eguchi, S., S. Matsumoto, S. Koyano and M. Takase: Effect of Topical Forskolin on Intraocular Pressure of Normal Volunteers. Atarashii Ganka, 3, 537–9 (1986) (Japan), Chem. Abstr. 105: 127424h.Google Scholar
  9. 88.
    Hosokawa, T., T. Yamashita, Y. Kasuya, S. Yanura, S. Matsumoto, M. Araie and M. Takase: Effects of Forskolin and Timolol on Cyclic AMP in Aqueous Humor and Intraocular Pressure. Atarashii, Ganka, 4, 543–6 (1987) (Japan) Chem. Abstr. 107: 89867m.Google Scholar
  10. 89.
    Shibata, T.: Experimental Studies on Changes of Intraocular Pressure by the Application of Forskolin II. Intraocular Pressure Changes in Albino and Pigmented Rabbits after Treatment with 1% Forskolin. Hiroshima Daigaku Igaku Zasshi, 35, 171–7 (1987) (Japan) Chem. Abstr 107 168772e.Google Scholar
  11. 90.
    Shibata, T.: Experimental Studies on Changes of Intraocular Pressure by the Application of Forskolin III. Binding to Melanin and Ocular Toxicity of Forskolin, Hiroshima Daigaku Igaku Zasshi, 35, 179–87 (1987) (Japan). Chem. Abstr. 107: 168773f.Google Scholar
  12. 91.
    Meyer, B.H., A.A. Stulting, F.O. Mueller, H.G. Luus and M. Badian: The Effects of Forskolin Eye Drops on Intraocular Pressure. SAMJ, 71, 570–1 (1987).Google Scholar
  13. 92.
    Seto, C, S. Eguchi, M. Araie, S. Motasumoto and M. Takase: Acute Effects of Topical Forskolin on Aqueous Humor Dynamics in Man. Jpn. J. Ophthalmol., 30, 238–44 (1986).Google Scholar

Kidney

  1. 93.
    Tamaki, T., K. Hasui, T. Shoji, Y. Aki, H. Kiyomotto, H. Iwao and Y. Abe: Forskolin Preferentially Dilates the Afferent Arteriole in the Canine Kidney. Jpn. J. Pharmacol. 55, 161–4 (1991).Google Scholar
  2. 94.
    Nakamura, K.T., B.M. Alden, G.P. Metherne, P.A. Jose and J.E. Robellard: Ontogeny of Renal Hemodynamic Response to Terbutaline and Forskolin in Sheep. J. Pharmacol. Exp. Ther., 247, 453–9 (1988).Google Scholar

Liver

  1. 95.
    Hamlin, S., K. Rahman, M. Carrella and R. Coleman: Modulation of Biliary Lipid Secretion by Forskolin and Cyclic AMP Analogues. Biochem. J. 265, 879–85 (1990).Google Scholar
  2. 96.
    Al-turk, W.A., O. Shaheen and S. Othman: Effect of Forskolin on cAMP Accumulation and Ketogenesis in Isolated Hepatocytes. Gen. Pharmacol., 17, 577–80 (1986).Google Scholar
  3. 97.
    Tzanakakis, G.N., K.C. Agarwaland M.P. Vezeridis: Inhibition of Hepatic Metastasis from a Human Pancreatic Adenocarcinoma (RWP-2) in the Nude Mouse by Prostacyclin, Forskolin and Ketoconazole. Cancer (Philadelphia), 65, 446–51 (1990).Google Scholar
  4. 98.
    Saitoh, R., Z. Minami, S. Kawata, S.Miyoshi K. Tajima, K. Mashita, K. Moriwaki and S. Tarui: The Inhibitory Effect of Forskolin on Antibody Dependent Cell Mediated Cytotoxicity Using Chang Liver Cells as Target Cells. Life Sei., 42, 239–45 (1988).Google Scholar

Muscle

  1. 99.
    Abe, A. and H. Karaki; Inhibitory Effects of Forskolin on Vascular Smooth Muscle of Rabbit Aorta. Jpn. J. Pharmacol., 46, 293–301 (1988).Google Scholar
  2. 100.
    Eneina, J.L. and F. Härtung: Analysis of the Hyperpolarising Effects of Forskolin in Guinea Pig Atrial Heart Muscle, Naunyn-Schmiedeberg’s Arch. Pharmacol., 337, 435–8 (1988).Google Scholar
  3. 101.
    Morita, T., S. Kondo, S. Dohkita and S. Tsuchida: The Time course of Changes in Force and Cyclic AMP Levels Produced by Isoproterenol and Forskolin in Isolated Rabbit Detrusor Muscle. Tohoku J. Exp. Med., 151, 201–4 (1987).Google Scholar
  4. 102.
    Tsukawaki, M., K. Suzuki, R. Suzuki, K. Takagi and T. Satake: Relaxant Effects of Forskolin on Guinea Pig Tracheal Smooth Muscle. Lung. 165, 225–37 (1987).Google Scholar
  5. 103.
    Morita, T. and M.A. Wheeler: Relaxant Effect of Forskolin in Rabbit Detrusor Smooth Muscle; Role of cAMP. J. Urol. (Baltimore), 135, 1293–5 (1986).Google Scholar
  6. 104.
    Morita, T., M.A. Wheeler, I. Miyagawa, S. Kondo and R.M. Weiss: Effects of Forskolin on Contractibility and Cyclic AMP Levels in Rabbit Detrusor Muscle, Tohoku J. Exp. Med., 149, 283–5 (1986).Google Scholar
  7. 105.
    Kempaski, O., B. Wroblewska and M. Spatz; Effects of Forskolin on Growth and Morphology of Cultured Glial and Cerebrovascular Endothelial and Smooth Muscle Cells. Int. J. Dev. Neurosci, 5, 435–45 (1987).Google Scholar
  8. 106.
    Poat, J.A., H. Cripps and L.L. Iverson: Interactions of Dopamine and Forskolin in Rat Streatal Tissue. Symp. Neurosci, 5, 161–9 (1988).Google Scholar
  9. 107.
    Xiao, R.P. and W.C. DeMello: Intracellular Resistance in Rat Papillary Muscle: Interaction Between Cyclic AMP and Calcium. J. Cardiovasc. Pharmocol., 17, 754–60 (1991).Google Scholar
  10. 108.
    Abe, A. and H. Karaki: Effect of Forskolin on Cystolic Calcium Level and Contraction in Vascular Smooth Muscle, J. Pharmacol. Exp. Ther. 249, 895–900 (1989).Google Scholar
  11. 109.
    Ozaki, H., S.C. Kwon, M. Tajimi and H. Karaki: Changes in Cystolic Calcium and Contraction Induced by various Stimulants and Relaxants in Canine Tracheal Smooth Muscle. Pflüegers Arch., 416, 351–9 (1990).Google Scholar

Nervous Tissue

  1. 110.
    Womble, M.D. and W.O. Wickelgren: Activation of Adenylate Cyclase by Forskolin Prolongs Calcium Action Potential Duration in Lamprey Sensory Neurons. Brain Res., 485, 89–94 (1989).Google Scholar
  2. 111.
    Nakagawa-Yagi, Y., Y. Saito, Y. Takada and M. Takayama: Carbachol Enhances Forskolin-stimulated Cyclic AMP Accumulation via Activation of Calmodulin System in Human Neuroblastoma SH-SY5Y Cells. Biochem. Biophys. Res. Commun. 178, 116–23 (1991).Google Scholar
  3. 112.
    Lando, M., E. Abemayor, M.A. Veriety and N. Sidell: Modulation of Intracellular Cyclic Adenosine Monophosphate Levels and the Differentiation Response of Human Neuroblastoma Cells. Cancer Res. 50, 722–7 (1990).Google Scholar
  4. 113.
    Murphy, M.G. and Z. Byczko; Effects of Adenosine Analogues on Basal, Prostagland in E2 and Forskolin-stimulated Cyclic AMP Formation in Intact Neuroblastoma Cells. Biochem. Pharmacol., 38, 3289–95 (1989).Google Scholar
  5. 114.
    Weiss, S.: Forskolin Alternates the Evoked Release of [3H]-GABA From Striated Neurons in Primary Culture. Brain Res., 463, 182–6 (1988).Google Scholar
  6. 115.
    Uhlen, S. and J.E.S. Wikberg: α-Adrenoceptor Mediate Inhibition of cAMP Production in the Spinal Cord after Stimulation of cAMP with Forskolin but not after Stimulation with Capscicin or Vasoactive Intestinal Peptide. J. Neurochem., 52, 761–7 (1989).Google Scholar
  7. 116.
    Uhlen, S and J.E.S. Wikberg: Relationship between Forskolin and Calcium Calmodulin Stimulation of Rat Cerebral Cortex Adenylate Cyclase: Enzyme Activation Modulates Substrate (Magnesium-ATP) Affinity. Pharmacol. Toxicol (Copenhagen) 63, 90–5 (1988).Google Scholar
  8. 117.
    Uhlen, S. and J.E.S. Wikberg: Inhibition of Cyclic AMP Production by α2- Adrenceptor Stimulation in the Guinea Pig Spinal Cord Slices. Pharmacol. Toxicol. (Copenhagen), 63, 178–82 (1988).Google Scholar
  9. 118.
    Wakade, A.R., S.V. Bhave, R.K. Malhotra and T.D. Wakade: Forskolin Mediates the Survival of Nerve Growth-factor-dependent Sympathetic Neurons of Chick Embryo by a Cyclic AMP Independent Mechanism, J. Neurochem. 54,1281–7 (1990).Google Scholar
  10. 119.
    Tischler, A.S., L.A. Ruzicka and R.L. Perlman: Mimicry and Inhibition of Nerve Growth Factor Effects: Interactions of Staurosporine, Forskolin and K252a in PC 12 Cells and Normal Rat Chromaffin Cells in vitro. J. Neurochem., 55, 1159–65 (1990)Google Scholar
  11. 120.
    Georgieva, Z.: Effects of the Diterpene Sclareol Glycol on Convulsive Seizures. Methods Find. Exp. Clin. Pharmacol., 11, 335–40 (1989).Google Scholar
  12. 121.
    Marriott, D., M. Adams and M.R. Boarder: Effect of Forskolin and Prostaglandin Ej on Stimulus Secretion Coupling in Cultured Bovine Adrenal Chromaffin Cells. J. Neurochem., 50, 616–23 (1988).Google Scholar
  13. 122.
    Morek, A. and A. Geisler: Calmodulin-dependent Adenylate Cyclase Activity in Rat Cerebral Cortex. Effects of Divalent Cations, Forskolin and Isoprenaline. Arch. Int. Physiol. Biochem., 97, 259–71 (1989).Google Scholar
  14. 123.
    Donaldson, J., D.A. Kendall and S.J. Hill: Discriminatory Effects of Forskolin and EGT A on the Indirect Cyclic AMP Responses to Histamine, Noradrenaline, 5- Hydroxytryptamine and Glutamate in Guinea Pig Cerebral Cortical Slices. J. Neuro- chem., 54, 1484–91 (1990).Google Scholar
  15. 124.
    Mobbs, C.V., J.M. Rothfeld, R. Saluja and D.W. Pfaff: Phorbol Esters and Forskolin Infused into Midbrain Central Gray Facilitate Lordosis. Pharmacol. Biochem. Behav., 34, 665–7 (1989).Google Scholar
  16. 125.
    Danura, T., T. Kurokawa, A. Yamashita and S. Ishibashi: Effective Inhibition by Pentobarbital of Forskolin Stimulated Adenylate Cyclase Activity in Rat Brain. Chem. Pharm. Bull. 37, 3142–4 (1989).Google Scholar
  17. 126.
    Guillen, A., A. Haro and A.M. Munico: Regulation by Forskolin of Octopamine Stimulated Adenylate Cyclase from Brain of the DipterousCeratitis capitata. Arch. Biochem. Biophys. 254, 234–40 (1987).Google Scholar
  18. 127.
    Srivastava, A.M. and A.K. Srivastava: Modulation of Adenylate Cyclase Activity by Calcium Phospholipid Dependent Protein Kinase in Rat Brain. Mol. Cell. Biochem., 92, 91–8 (1990).Google Scholar
  19. 128.
    Stübner, D. and R.A. Johnson: Forskolin Decreases Sensitivity of Brain Adenylate Cyclase to Inhibition of 2’,5’-Dideoxyadenosine. FEBS Letters, 248, 155–61 (1989).Google Scholar
  20. 129.
    Wysham, D.G., A.F. Brotherton and D.D Heistad: Effects of Forskolin on Cerebral Blood Flow; Implications for a Role of Adenylate Cyclase. Stroke (Dallas) 17, 1299–303 (1986).Google Scholar
  21. 130.
    Poat, J.A., H.E. Cripps and L.L. Iversen: Differences between High-affinity Forskolin Binding Sites in Dopamine-rich and Other Regions of Rat Brain. Proc. Natl. Acad. Sei. U.S.A., 85, 3216–20 (1988).Google Scholar

Pancreas

  1. 131.
    Iwatsuki, K., A. Horiuchi, F. Yamagishi and S. Chiba: Effects of Forskolin on Pancreatic Exocrine Secretion and Cyclic Nucleotide Concentration of the Dog Pancreas. Arch. Int. Pharmacodyn. Ther., 286, 320–8 (1987).Google Scholar
  2. 132.
    Anazodo, M.I., A.B. Mueller, H. Safayhi and H.P.T. Ammon: Potentiation of Forskolin Induced Increase of cAMP by Diamide and N-Ethylmaleimide in Rat Pancreatic Islets. Horm. Metab. Res. 22, 61–4 (1990).Google Scholar

Bone

  1. 133.
    Conaway, H.H., R.L. Abraham and G.L. Wadkins: Effects of Forskolin on Bone Resorption in the Absence and Presence of Parathyroid hormone and Calcitonin. Calcif. Tissue Int., 40, 276–81 (1987).Google Scholar
  2. 134.
    Ksieger, N.S. and P. Stern: Effects of Forskolin on Bone in Organ Culture. Am. J. Physiol., 252, E 44–48 (1987).Google Scholar
  3. 135.
    Lorenzo, J.A., S. Souza and J. Quinton: Forskolin has Both Stimulatory and Inhibitory Effects on Bone Resoption in Fetal Rat Long Bone Cultures. J. Bone Miner. Res., 1, 313–17 (1986).Google Scholar
  4. 136.
    Malemud, C.J., T.M. Mills, R. Shuckett and R.S. Papay: Stimulation of Sulfated Proteoglycan Synthesis by Forskolin in Monolayer Cultures of Rabbit Articular Chondrocytes. J. Cell. Physiol. 129, 51–9 (1986).Google Scholar
  5. 137.
    Hu, L.M., S.F. Kemp, M.J. Elders and W.G. Smith: Effect of Forskolin on Synthesis of Xyloside-initiated Glucosaminoglycans in Embryonic Chick Chondrocytes. Biochem. Biophys. Acta, 1051, 112–14(1990).Google Scholar
  6. 138.
    Hu, L.M., S.F., Kemp, M.J. Elders and W.G. Smith: Metabolic Effects of Forskolin in Chick Chondrocytes. Biochem. Biophys. Acta, 1013, 294–9 (1989).Google Scholar
  7. 139.
    Sechenska, M. and A. Timanova: Forskolin as an Activator of Adenylate Cyclase Complex Differentiating Erythroid Bone-marrow Cells. Acta Physiol. Pharmacol. Bulg., 16, 50–6 (1990).Google Scholar
  8. 140.
    Hakeda, Y., Y. Nakatani, T. Yoshino, N. Kurihora, K. Fujita, N. Meeda and M. Kumegawa: Effect of Forskolin on Collagen Production in Clonal Osteoblastic MC3T3-EI Cells. J. Biochem., 101, 1463–9 (1987).Google Scholar

Respiratory Tissue

  1. 141.
    Fuller, R.W., G.O. Malley, A.J. Baker and J. MacDermot: Human Alveolar Macrophage Activation Inhibition by Forskolin but not by β-Adrenoreceptor Stimulation or Phosphodiesterase Inhibition. Pulm. Pharmacol., 1, 101–6 (1988).Google Scholar
  2. 142.
    Heaslip, R.J., F.R. Giesa, T.J. Rimele and D. Grimes: Sensitivity of the PGF versus Carbachol-contracted Trachea to Relaxation by Salbutamol, Forskolin and Prenalterol. Eur. J. Pharmacol., 128, 73–9 (1986).Google Scholar
  3. 143.
    Giembycz, M.A. and J. Diamond: Partial Characterization of cAMP Dependent Protein Kinase in Guinea Pig Lung Employing the Synthetic Heptapeptide Substrate, Kemptide. In vitro Sensitivity of the Soluble Enzyme to Isoprenaline, Forskolin, Methacholine and Leukotriene D4. Biochem. Biopharmacol., 39, 1297–312 (1990).Google Scholar
  4. 144.
    Undem, B.J. and C.K. Buckner: Effects of Forskolin Alone and in Combination with Isoproterenol on Antigen Induced Histamine Release from Guinea Pig Minced Lung. Arch Int. Pharmacodyn. Then, 281, 110–19 (1986).Google Scholar

Reproductive Tissue

  1. 145.
    Nishikawa, T., A. Sato, T. Kanai, T. Kasajima, Y. Nakajima, M. Ando and A. Takao: The Teratogenic Effect of Forskolin on Cardiovascular Development in the Chick Embryo. Reprod. Toxicol, 3, 139–42 (1989).Google Scholar
  2. 146.
    Fuchs, V. and H.H. Riedal: The Effect of Forskolin on Sperm Motility. Andrologia, 21, 293–6 (1989).Google Scholar
  3. 147.
    Rui, H., P. Kenneth, and J.O. Gorddadze: Sperm Adenylyl cyclase in Young and Middle-aged men. Andrologia, 21, 131–5 (1989).Google Scholar
  4. 148.
    Rankin, J.H.G., M. Landauer, Q. Tian and T.M. Phernetton: Cardiovascular Responses to Forskolin in the Ovine Fetus, J. Dev. Physiol, 11, 7–10 (1989).Google Scholar
  5. 149.
    Coruzzi, G., E. Poli, C. Montanari and G. Bertaccini: Pharmacological Charater- ization of Mare Uterus Motility with Special Reference to Calcium Antagonists and Beta-2-adrenergic Stimulants. Gen. Pharmacol, 20, 513–18 (1989).Google Scholar
  6. 150.
    Reid, D.L., M.C. Hollister, T.M. Phernetton and J.H.G. Rarkin: Effects of Forskolin on Placental Vascular Resistance in Rabbits. Proc. Soc. Exp Biol. Med., 188, 451–4 (1988).Google Scholar
  7. 151.
    Baum, M.G.S. and E.B. Ahren: Effects of Forskolin, Luteinizing Hormone and Prostaglandin F2 on Isolated Rat Corpora Lutea. Acta Endocrinol. (Copenhagen), 112, 571–8 (1986).Google Scholar
  8. 152.
    Reid, D.L., T.M. Phernetton and J.H.G. Rankin: Ovine Fetal Coronary and Cerebral Vascular Responses to Forskolin. J. Dev. Physiol., 12, 63–5 (1989).Google Scholar
  9. 153.
    Deklac, L., A. Mokhtari and S. Harbon: A Re-evaluated Role for cAMP in uterine Relaxation. Differential Effect of Isoproterenol and Forskolin. J. Pharmacol. Exp. Ther., 239, 236–42 (1986).Google Scholar

Urinary Bladder

  1. 154.
    Casavola, V., G. Calamita, G. Valenti and M. Svelto: Some Characteristics of Forskolin Actions on Osmotic Water Flow in Frog Urinary Bladder. Med. Sei. Res., 16, 373–4 (1988).Google Scholar
  2. 155.
    Lippe, C. and C. Ardizzone: Action of Forskolin on Non-electrolyte Permeability Across the Urinary Bladder of Bufo bufo as Compared to that of Various Hormones. Gen. Pharmacol., 19, 513–14 (1988).Google Scholar

Hormone

  1. 156.
    Guild, S., Y. Itoh, J.W. Kebabian, A. Luim and J. Reisine: Forskolin Enhances Basal and K + Evoked Hormone Release from Normal and Malignant Pituitary Tissues: The role of Ca2 +. Endocrinology (Baltimore), 118, 268–79 (1986).Google Scholar
  2. 157.
    Ray, K.P., J.J. Gomm, G.J. Law, C. Sigournay and M. Wallis; Dopamine and Somatostatin Inhibit Forskolin Stimulated Prolactin and Growth Hormone Secretion but not Stimulated Cyclic AMP Levels in Sheep Anterior Pituitary cell culture. Mol. Cell. Endocrinol, 45, 175–82 (1986).Google Scholar
  3. 158.
    Yun, K., S. Yamashita, K. Izumi, N. Yonemitsu and H. Sugihara: Effects of Forskolin on the Morphology and Function of the Rat Thyroid Cell Strain FRTL-5: Comparison with the Effects of Thyrotropin. J. Endocrinol, 111, 397–405 (1986).Google Scholar
  4. 159.
    Guillon, G., M.N. Balestre, C. Lombard, F. Ressendren and C.J. Kirk; Influence of Bacterial Toxins and Forskolin upon Vasopressin-induced Inositol Phosphate Accumulation in WRK1 Cells. Biochem. J., 260, 665–72 (1989).Google Scholar
  5. 160.
    Ahmad, F., M.M. Khan, A.K. Rastogi and J.R. Kidwai: Insulin and Glucagon Releasing Activity of Coleonol (Forskolin) and Its Effect on Blood Glucose Level in Normal and Alloxan Diabetic Bats. Acta Diabetal Lat., 28, 71–77 (1991).Google Scholar
  6. 161.
    Valensi, P., B. Lilievre, D. Sandre-Banon and J.R. Attali: Stimulating Effect of Forskolin on Thyroxine Secretion, Influence of Calcium. Pathol. Biol., 39, 205–10 (1991).Google Scholar
  7. 162.
    Menendez-Pelaez, A., G.R. Buzzell, K.O. Nonaka and R.J. Reiter: In vivo Administration of Isoproterenol or Forskolin during the Light Phase Induces increases in the Melatonin Content of the Syrian Hamster Pineal Gland without a Rise in N-Acetyl Transferase Activity. Neurosci. Letters, 110, 314–18 (1990).Google Scholar
  8. 163.
    OToole, L.B., K.J. Armour, C. Decourt, N. Hazon, B. Lalilou and I.W. Henderson: Secretory Pattern of la-Hydroxycarticosterone in the Isolated Perfused Internal Gland of Dog Fish.Scyliorhinus canicula, J. Mol. Endocrinol., 5, 55–60 (1990).Google Scholar
  9. 164.
    Adashi, E.Y. and C.E. Resnick; 3’,5’-cyclic Adenosine Monophosphate as an Intracellular Second Messenger of luteinizing Hormone; Application of the Forskolin Criteria. J. Cell. Biochem., 31, 217–18 (1986).Google Scholar
  10. 165.
    Clark, K.L., G.M. Drew and A. Hilditch: Potentiation of the Effects of Dopamine in the Rabbit Isolated Splenic Artery by 3-Isobutyryl-l-methylxanthine or Forskolin. Nauny-Schmiedebergs, Arch. Pharmacol., 340, 533–40 (1989).Google Scholar
  11. 166.
    Whalen, M.M. and A.D. Bankhurst: Effect of β-Adrenergic Receptor Activation, Cholera Toxin and Forskolin on Human Natural Killer Cell Function, Biochem. J., 272, 327–31 (1990).Google Scholar
  12. 167.
    Santana, C, J.M. Guerrero, R.J. Reiter, A. Gonzalez-Brito and A. Menendez- Pelaez: Forskolin, an Activator of Adenylate Cyclase Activity, Promotes Large Increase in N-Acetyl Transferase Activity and Melatonin Production in the Syrian Hamster Pineal Gland only during the Late Dark period. Biochem. Biophys. Res. Commun 115, 200–15 (1988).Google Scholar
  13. 168.
    Frankyln, J.A., M. Wilson and J.R. Datres: Demonstration of Thyrotropin B Subunit Messenger RNA in Rat Pituitary Cells in Primary Culture. Evidence for Regulation by Thyrotropin Releasing Hormone and Forskolin. J. Endocrinol., 111, R1-R2 (1986).Google Scholar
  14. 169.
    Nikula, H. and I. Huhtaniemi: Effect of Protein Kinase C Activation on Cyclic AMP and Testosterone Production of Rat Leyding Cells in vitro. Acta Endocrinol., 121, 327–33 (1989).Google Scholar

Ion Channels

  1. 170.
    Nishzawa, Y., K.B. Seamon, J.W. Daly and R.S. Aronstam: Effects of Forskolin and Analogues on Nicotinic-receptor Mediated Sodium Flux, Voltage Dependent Calcium Flux and Voltage Dependent Rabidium Efflux in Pheochromocytoma PC 12 Cells. Cell. Mol Neurobiol., 10, 351–68 (1990).Google Scholar
  2. 171.
    Sen, R.P., E.G. Delioado and M.T. Miras-Portugal: Effect of Forskolin and Cyclic AMP Analogues on Adenosine Transport in Cultured Chromaffin Cells. Neurochem. Int., 17, 523–8 (1990).Google Scholar

Transcription- Translation

  1. 172.
    Shupnik, M.A., B.A. Rosenzweig and M.O. Showers: Interactions of Thyrotropin Releasing Hormone, Phorbol Ester and Forskolin Sensitive Regions of the Rat Thyrotropin-p Gene. Mol Endocrinol, 4, 829–36 (1990).Google Scholar
  2. 173.
    Muehl, H., T. Geiger, W. Pignat, F. Maerki, H. V. Bosch, K. Vasbeck and J. Pfeilschifter: PDGF Supresses the Activation of Group II Phospholipase A2 Gene Expression by interleukin 1 and Forskolin in Mesangial Cells. FEBS Lett., 291, 249–52 (1991).Google Scholar
  3. 174.
    Bertrand, S., D. Karim, D. Brigitte, J. Claude and C. Claude: Cyclic AMP Regulation of Gs Protein. Thyrotropin and Forskolin Increase the Quantity of Stimulatory Guanine Nucleotide Binding Proteins in Cultured Thyroid Follicles. J. Biol. Chem., 265, 19942–6 (1990).Google Scholar
  4. 175.
    Aizawa, T. and A. Nozawa: Phorbol Ester Regulates the Abundance of Enkephalin Precursor mRNA but not of Amyloid (3-Protein Precursor mRNA in Rat Testicular Peritubular Cells. Biochem. Biophys. Res. Comm., 16, 568–75 (1989).Google Scholar
  5. 176.
    Moens, U., A. Sundsfjord, T. Flaegstad and T. Traavik: BK virus early RNA Transcripts in Stably Transformed Cells: Enhanced Levels Induced by Dibutyryl Cyclic AMP, Forskolin and 12–0-Tetradecanoyl-phorbol-13-acetate Treatment. J. Gen Virol. 71, 1461–71 (1990).Google Scholar
  6. 177.
    Reuse, S., I. Prison and J.E. Dumont: Differential Regulation of Protooncogenes C- jun and jun-D Expressions by Protein Kinase C and Cyclic AMP, Mitogenic Pathways in Dog Primary Thyrocytes: TS11 and cyclic AMP Induce Proliferation but Downgrade C-jun Expression. Exp. Cell. Res., 196, 210–15 (1991).Google Scholar
  7. 178.
    Loeffler, J.P., N. Kley, C.W. Pittius and V. Hoellt: Corticotropin Releasing Factor and Forskolin Increase Proopiomelanocortin Messenger RNA Levels in Rat Anterior and Intermediate Cells in vitro. Neurosci., Letters, 62, 383–7 (1986).Google Scholar
  8. 179.
    Kiil, B.H., E. Ruud, S. Funderud and T. Godal: Distinct Effect of Forskolin and Interferon-y on Cell Proliferation and Regulation of Histocompatibility Antigen Expression in Hematopoietic Cells. Biochem, Biophys. Acta, 887, 150–6 (1986).Google Scholar
  9. 180.
    Schalkwijk, C. J. Pfeilschifter, F. Maerki and H. Van Den Bosch: Interleukin- 1 β, Tumor Necrosis Factor and Forskolin Stimulate the Synthesis and Secretion of Group II Phospholipase A2 in Rat Masangial Cells. Biochem. Biophys. Res., Commun., 174, 268–75 (1991).Google Scholar
  10. 181.
    Harsh, G.R., W.M. Kavanaugh and N.F. Starksen: Cyclic AMP Blocks Expression of the C-sis Gene in Tumor Cells. Oncog. Res., 4, 65–73 (1989).Google Scholar
  11. 182.
    Choi, H.S., B. Li, Z. Lin, L.E. Huang and A.Y.C. Liu: cAMP and cAMP Dependent Protein Kinase Regulate the Human Heat Shock Protein 70 Gene Promoter Activity. J. Biol. Chem., 266, 11858–65 (1991).Google Scholar

Skin

  1. 183.
    Matsuo, S. and H. Iizuka: Cholera Toxin and Forskolin Induced Cyclic AMP Accumulations of Pig Skin (Epidermis). Modulation by Chemicals which Reveal the beta-Adrenergic Augmentation Effect. J. Dermatol. Sci., 1, 7–13 (1990).Google Scholar
  2. 184.
    Bonic, A., K. Kouris, N. Rajacic, M. Nazal and O. Thulesius: Increased Skin Flap Viability after Treatment with Forskolin or with Ridogrel, a Thromboxane Synthesis Inhibitor and Receptor Blocker. Res. Exp Med., 190, 223–7 (1990).Google Scholar
  3. 185.
    Iizuka, H., S. Matsuo, T. Tamura and N. Ohkuma: Increased Cholera Toxin and Forskolin Induced cAMP Accumulations in Psoriatic Involved versus Uninvolved or Normal Human Epidermis, J. Invest. Dermatol., 91, 154–7 (1988).Google Scholar

Miscellaneous

  1. 186.
    Brooker, G. and C. Pedone: Maintenance of Whole Cell Isoproterenol and Forskolin Responsiveness in Adenylate Cyclase of Permeabilised Cells. J. Cyclic Nucleotide protein phosphorylation Res., 11, 113–21 (1986).Google Scholar
  2. 187.
    Ho, L.J. and R.J. Ho: Production and Assay of Antibodies to an Activator of Adenylate Cyclase Forskolin. J. Cyclic Nucleotide Protein Phosphorylation Res., 11, 421–32 (1987).Google Scholar
  3. 188.
    Kitajima, S., M. Sano, K. Kato, A. Seto-Ohshima and A. Mizutani: Changes of Calmodulin and S-100 Protein in C6 Glioma Cells as a Result of Cellular Differentiation Induced by Forskolin. Acta Histochem. Cytochem., 19, 365–9 (1986).Google Scholar
  4. 189.
    McCulloch, A.J., T.A. Thomson, R. Deacon and C.R. Gardner: Hypoxic Amnesia and its Reversal with Forskolin. Biochem. Soc. Trans. 17, 212–13 (1989).Google Scholar
  5. 190.
    Cornfield, I.J., D.L. Nelson, P.J. Monroe, E.W. Taylor and S.S. Nikam: Use of Forskolin Stimulated Adenylate Cyclase in Rat Hippocampus as a Screen for Compounds that Act Through 5-HTR1A Receptors, Proc. West. Pharmacol. Soc., 31, 265–7 (1988).Google Scholar
  6. 191.
    Lippincott-Schwartz, J., J. Glickman, J.G. Donaldson, J. Robbins T.E. Kreis, K.B. Seamon, M.P. Sheetz and R.D. Klausner: Forskolin Inhibits and Reverses the Effects of Brefeldin A on Golgi Morpholgy by cAMP Independent Mechanism. J. Cell. Biol., 112, 567–77 (1991).Google Scholar
  7. 192.
    Tertrin-Clary, C., M. Roy, L. De and P. Llosa: Action of Manganese (2+) and Vanadium Compounds on Hormone and Forskolin Induced Stimulation of Juncile Rat Ovarian Adenylate Cyclase. Biochem. Int., 13, 1019–35 (1986).Google Scholar
  8. 193.
    Takeda, O., K. Yamasa, H. Kohda, A. Yamashita, T. Kurokawa and S. Ishibashi: The Inhibitory Effect of Methanol on Forskolin Activated Adenylate Cyclase in Rat Erythrocyte Membrane Dependent on the State of the Guanine Nucleotide Binding Stimulatory and Regulatory Protein. J. Pharmocobio. Dyn., 11, 377–80 (1988).Google Scholar
  9. 194.
    Marone, G., M. Columbo, M. Triggiani, S. Vigorita and S. Formisano: Forskolin Inhibits the Release of Histamine from Human Basophil and Mast Cells. Agents Actions, 18, 96–9 (1986).Google Scholar
  10. 195.
    Szabo, G., P.L. Hoffman and B. Tabakoff: Forskolin Promotes the Development of Ethanol Tolerance in 6-Hydroxydopamine Treated Mice. Life Sei., 42, 615–21 (1988).Google Scholar

Copyright information

© Springer-Verlag/Wien 1993

Authors and Affiliations

  • Sujata V. Bhat
    • 1
  1. 1.Department of ChemistryIndian Institute of TechnologyPowai, BombayIndia

Personalised recommendations