Skip to main content

Data Acquisition and Model Parameter Measurements

  • Chapter
  • 1071 Accesses

Part of the book series: Computational Microelectronics ((COMPUTATIONAL))

Abstract

The accuracy of the device model predictions of the device characteristics are fully dependent on the model parameter values being used. Most of the circuit models discussed in the previous chapters are semi-empirical analytical models. These models always contain some fitting parameters that do not have physically well defined values, and very often physical values of model parameters do not always give the best fit to the actual device characteristics. For this reason, device model parameters are determined from the device data obtained from electrical measurement on different length and width devices and under different bias conditions. Collecting measured data and processing these data to accurately determine model parameter values is an essential task for the complete characterization of a transistor model for use in the circuit simulator.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology ,John Wiley & Sons, New York, 1982.

    Google Scholar 

  2. R. C. Y. Fang, R. D. Rung, and K. M. Cham, ’An improved automatic test system for VLSI parameteric testing’, IEEE Trans. Instrumentation and Measurement, IM-31, pp. 198–205 (1982).

    Google Scholar 

  3. B. S. Messenger, ’A fully automated MOS device characterization system for process-oriented integrated circuit design’, Memorandum No. UCB/ERL M84/18, Electronic Research Laboratory, University of California, Berkeley, January 1984.

    Google Scholar 

  4. O. Melstrand, E. O’Neill, G. E. Sobelman, and D. Dokos, ’A data base driven automated system for MOS device characterization, parameter optimization and modeling’, IEEE Trans. Computer-Aided Design, CAD-3, pp. 47–51 (1984).

    Google Scholar 

  5. E. Khalily, P. H. Decher, and D. A. Teegarden, TECAP2: An interactive device characterization and model development system’, Tech. Digest ,IEEE Int. Conf. on Computer-Aided Design, ICCAD-84, pp. 184–151 (1984).

    Google Scholar 

  6. K. Doganis and S. Hailey, ’A unified physical device modeling environment’, IEEE 1986 Custom Integrated Circuit Conference, pp. 203–207 (1986).

    Google Scholar 

  7. D. Cheung, A. Clark, and R. Starr, ’The INMOS integrated parameteric test and analysis system’, Proc. IEEE Int. Conf. on Microelectronic Test Structures, Vol. 2, No. 1, pp. 45–50, March 1989.

    Google Scholar 

  8. Operation and Service Manual for Model 4145B Semiconductor Parameter Analyzer, Hewlett Packard Corporation, USA, 1986.

    Google Scholar 

  9. Operating Manual for Model 4275A Multi-Frequency LCR Meter, Hewlett Packard Corporation, USA, 1983.

    Google Scholar 

  10. Operation and Service Manual for Model 4MOB pA Meter/DC Voltage Source, Hewlett Packard Corporation, USA, 1980.

    Google Scholar 

  11. Y. Nissan-Cohen, ’A novel floating-gate method for measurement of ultra-low hole and electron gate currents in MOS transistors,’ IEEE Electron Device Lett., EDL-7, pp. 561–563 (1982).

    Google Scholar 

  12. N. S. Sakas, P. L. Heremans, L. Van Den Hove, H. E. Maes, R. F. De Keersmaecker, and G. J. Declerck, ’Observation of hot-hole injection in NMOS transistors using a modified floating-gate technique’, IEEE Trans. Electron Devices, ED-33, pp. 1529– 1533 (1986).

    Google Scholar 

  13. G. B. Barbottin and A. Vapaille, Eds., Instabilities in Silicon Devices ,Vol II (Chapter 12), North-Holland, New York, 1989.

    Google Scholar 

  14. K. R. Mistry and B. Doyle, ’AC versus DC hot-carrier degradation in n-channel MOSFETs’, IEEE Trans. Electron Devices, ED-40, pp. 96–104 (1993).

    Google Scholar 

  15. W. W. Lin and P. C. Chan, ’On the measurement of parasitic capacitances of device with more than two external terminals using an LCR meter,’ IEEE Trans. Electron Devices, ED-38, pp. 2573–2574 (1991).

    Google Scholar 

  16. D. K. Schroder, Semiconductor Material and Device Characterization ,John Wiley & Sons Inc., New York, 1990.

    Google Scholar 

  17. E. H. Nicollian and J. R. Brews, ’Instrumentation and analog implementation of Q-C method of MOS measurement’, Solid-State Electron., 27, pp. 953–962 (1984). See also related papers, ibid ,pp. 963–975 and pp. 977–988 (1984).

    Google Scholar 

  18. M. Kuhn, ’A quasi-static technique for MOS C-V and surface state measurements’, Solid-State Electron., 13, pp. 873–885 (1970).

    Google Scholar 

  19. K. Iniewski, A. Balasinski, B. Majkusiak, R. B. Beck, and A. Jakubowski, ’Series resistance in a MOS capacitor with a thin gate oxide’, Solid-State Electron., 32, pp. 137–140 (1989).

    Google Scholar 

  20. K. Riedling, Ellipsometry for Industrial Applications ,Springer-Verlag, New York, 1988.

    Google Scholar 

  21. M. J. McNutt and C. T. Sah, ’Determination of the MOS Oxide capacitance’, J. Appl. Phys., 46, pp. 3909–3913 (1975).

    Google Scholar 

  22. D. Schmitt-Landsiedel, K. R. Hofmann, H. Oppolzer, and G. Dorda, ’Thickness determination of thin oxides in MOS structures,’ in Insulating Films on Semiconductors (J. F. Verweij and D. R. Wolters, eds.), pp. 126, North-Holland, New York, 1983.

    Google Scholar 

  23. B. Ricco, P. Olivo, T. N. Nguyen, T. S. Kuan, and G. Ferriani, ’Oxide-thickness determination in thin-insulator MOS structures’, IEEE Trans. Electron Devices, ED-35, pp. 432–438 (1988).

    Google Scholar 

  24. G. Sarrabayrouse, F. Campabadal, J. L. Prom, ’Oxide-thickness determination from C/V measurement in an MOS capacitor,’ IEE Proceedings, 136, Pt. G, pp. 215– 216 (1989).

    Google Scholar 

  25. B. Majkusiak and A. Jakubowski, ’A technical formula for determining the insulator capacitance in a MOS structure’, Solid-State Electron., 35, pp. 223–224 (1992).

    Google Scholar 

  26. A. Savitzky and M. J. E. Golay, ’Smoothing and differentiation of data by simplified least squares procedures’, Anal. Chem., 36, pp. 1627–1639 (1964).

    Google Scholar 

  27. H. Maes, W. Vandervorst, and R. van Overstraeten, ’Impurity profile of implanted ions in silicon’, in Impurity Doping Processes in Silicon (F. F. Y. Wang, Ed.), North-Holland, New York, 1981.

    Google Scholar 

  28. N. D. Arora, D. J. Roulston, and S. G. Chamberlain, ’Distribution profiles of diffused layers in silicon’, Solid-State Electron., 25, pp. 965–967 (1982).

    Google Scholar 

  29. W. Vandervorst and T. Clarysse, ’Recent developments in the interpretation of spreading resistance profiles for VLSI technology’, J. Electrochem. Soc., 137, pp. 679–683 (1990).

    Google Scholar 

  30. A. Jakubowski and K. Iniewski, ’Simple formula for analysis of C-V characteristics of MIS capacitor’, Solid-State Electron., 26, pp. 755–756 (1983).

    Google Scholar 

  31. D. M. Brown, R. J. Conney, and P. V. Gray, ’Doping profiles by MOSFET deep depletion CV, J. Electrochem. Soc., 122, pp. 121–127 (1975).

    Google Scholar 

  32. K. Ziegler, E. Klausmann, and S. Karr, ’Determination of the semiconductor doping profile right up to its surface using MIS capacitor’, Solid-State Electron, 18, pp. 189–198 (1975).

    Google Scholar 

  33. S. H. Lin and J. Reuter, The complete doping profile using MOS CV technique’, Solid-State Electron., 26, pp. 343–351 (1983).

    Google Scholar 

  34. G. Baccarani, H. Rudan, G. Spaini, H. Maes, W. V. Ander Vorst, and R. Van Overstraeten, ’Interpretation of C-V measurements for determining the doping profile in semiconductors’, Solid-State Electron., 23, pp. 65–71 (1980).

    Google Scholar 

  35. C. P. Wu, E. C. Douglas, and C. W. Mueller, ’Limitations of the C-V technique for ion-implanted profiles’, IEEE Trans. Electron Devices, ED-22, pp. 319–329 (1975).

    Google Scholar 

  36. B. J. Gordon, ’On-line capacitance-voltage doping profile measurement’, IEEE Trans. Electron Devices, ED-27, pp. 2268–2272 (1980).

    Google Scholar 

  37. K. Lehovec, ’C-V profiling of steep dopant distribution’, Solid-State Electron., 27, pp. 1097–1105(1984).

    Google Scholar 

  38. I. G. McGillivray, J. M. Robertson, and A. J. Walton, ’Improved measurement of doping profile in silicon using CV techniques’, IEEE Trans. Electron Devices, ED-35, pp. 174–179 (1988).

    Google Scholar 

  39. K. Iniewski and C. A. T. Salama, ’A new approach to CV profiling with sub-debye-length resolution,’ Solid-State Electron., 34, pp. 309–314 (1991).

    Google Scholar 

  40. G. Lubberts, ’Rapid determination of semiconductor doping and flatband voltage in large MOSFETs’, J. Appl. Phys., 48, pp. 5355–5356 (1977).

    Google Scholar 

  41. J. A. Wikstrom and C. R. Viswanathan, ’A direct depletion capacitance measurement technique to determine the doping profile under the gate of a MOSFET’, IEEE Trans. Electron Devices, ED-34, pp. 2217–2219 (1987).

    Google Scholar 

  42. M. Shannon, ’DC measurement of the space charge capacitance and impurity profile beneath the gate of an MOST’, Solid-State Electron., 14, pp. 1099–1106 (1971).

    Google Scholar 

  43. M. G. Buchler, ’Dopant profiles determined from enhancement-mode MOSFET DC measurements’, Appl. Phys. Lett., 31, pp. 848–850 (1977).

    Google Scholar 

  44. M. H. Chi and C. M. Hu, ’Errors in threshold-voltage measurements of MOS transistors for dopant-profile determinations’, Solid-State Electron., 24, pp. 313–316 (1981).

    Google Scholar 

  45. G. P. Carver, ’Influence of short-channel effects on dopant profiles obtained from the DC MOSFET profile method’, IEEE Trans. Electron Devices, ED-30, pp. 948–953 (1983).

    Google Scholar 

  46. N. Kasai, N. Endo, A. Ishitani, and Y. Kurogi, ’Impurity profile measurement using VT-VSB characteristics,’ NEC Res. & Develop., 74, pp. 109–114 (1984).

    Google Scholar 

  47. K. Iniewski and A. Jakubowski, ’A new method for the determination of channel depth and doping profile in buried-channel MOS transistors’, Solid-State Electron., 31, pp. 1259–1264(1988).

    Google Scholar 

  48. D. W. Feldbaumer and D. K. Schroder, ’MOSFET doping profiling’, IEEE Trans. Electron Devices, ED-18, pp. 135–139 (1991).

    Google Scholar 

  49. H. G. Lee, S. Y. Oh, and G. Fuller, ’A Simple and accurate method to measure the threshold voltage of an enhancement-mode MOSFET’, IEEE Trans. Electron Dev., ED-29, pp. 346–348 (1982).

    Google Scholar 

  50. H. S. Wong, M. H. White, T. J. Krutsick, and R. V. Booth, ’Modeling of transconduc-tance degradation and extraction of threshold voltage in thin oxide MOSFETs’, Solid-State Electron., 30, pp. 953–968 (1987).

    Google Scholar 

  51. R. V. Booth, H. S. Wong, M. H. White, and T. J. Krutsick, ’The effect of channel implants on MOS transistor characterization’, IEEE Trans. Electron Devices, ED-34, pp. 2501–2508 (1987).

    Google Scholar 

  52. S. Jain, ’Measurement of threshold voltage and channel length of submicron MOSFETs’, Proc. IEE, Pt. I, 135, pp. 162–164 (1988).

    Google Scholar 

  53. M. J. Deen and Z. X. Yan, ’A new method for measuring the threshold voltage of small-geometry MOSFETs from subthreshold conduction’, Solid-State Electron., 33, pp. 503–511 (1990).

    Google Scholar 

  54. C. G. Sodini, T. W. Ekstedt, and J. L. Moll, ’Charge accumulation and mobility in thin dielectric MOS transistors’, Solid-State Electron., 25, pp. 833–841 (1982).

    Google Scholar 

  55. N. D. Arora and G. Sh. Gildenblat, ’A semi-empirical model of the MOSFET inversion layer mobility for low-temperature operation, IEEE Trans. Electron Devices, ED-34, pp. 89–93 (1987).

    Google Scholar 

  56. J. Kooman, ’Investigation of MOST channel conductance in week inversion’, Solid-State Electron., 16, pp. 801–810 (1973).

    Google Scholar 

  57. M. S. Liang, J. Y. Choi, P. K. Ko, and C. M. Hu, ’Inversion-layer capacitance and mobility of very thin gate-oxide MOSFETs’, IEEE Trans. Electron Devices, ED-33, pp. 409–413(1986).

    Google Scholar 

  58. P.-M. D. Chow and K.-L. Wang, ’A new AC technique for accurate determination of channel charge and mobility in very thin gate MOSFETs’, IEEE Trans. Electron Devices, ED-33, pp. 1299–1304 (1986).

    Google Scholar 

  59. G. Sh. Gildenblat, C.-L. Huang, and N. D. Arora, ’Split C-V measurements of low temperature MOSFET inversion layer mobility,’ Cryogenics, 29, pp. 1163–1166 (1989)

    Google Scholar 

  60. C. L. Huang, J. Faricelli, and N. D. Arora, ’A new technique for measuring MOSFET inversion layer mobility’, IEEE Trans. Electron Devices, ED-40, pp. 1134–1139 (1993).

    Google Scholar 

  61. A. Hairapetian, D. Gitlin, and C. R. Viswanathan, ’Low-temperature mobility measurements on CMOS devices’, IEEE Trans. Electron Devices, ED-36, pp. 1448–1445 (1989).

    Google Scholar 

  62. K. Terada and H. Muta, ’A new method to determine effective MOSFET channel length’, Japanese J. Appl. Phys., 18, pp. 953–959 (1979).

    Google Scholar 

  63. J. G. J. Chern, P. Chang, R. F. Motta, and N. Godinho, ’A new method to determine MOSFET channel length’, IEEE Electron Device Lett., EDL-1, pp. 170–173 (1980).

    Google Scholar 

  64. S. E. Laux, ’Accuracy of an effective channel length/external resistance extraction algorithm for MOSFETs’, ED-31, pp. 1245–1251 (1984).

    Google Scholar 

  65. J. Scarpulla and J. P. Krusius, ’Improved statistical method for extraction of MOSFET effective channel length and resistance’, IEEE Trans. Electron Devices, ED-34, pp. 1354–1359 (1987).

    Google Scholar 

  66. B. J. Sheu, C. Hu, P. K. Ko, and F.-C. Hsu, ’Source-and-drain series resistance of LDD MOSFETs’, IEEE Electron Device Lett., EDL-5, pp. 365–367 (1984).

    Google Scholar 

  67. K. K. Ng and J. R. Brews, ’Measuring the effective channel length of MOSFETs’, IEEE Circuits and Devices Magazine, 6, pp. 33–38, Nov. 1990.

    Google Scholar 

  68. M. R. Wordeman, J. Y.-C. Sun, and S. E. Laux, ’Geometry effects in MOSFET channel length extraction algorithms’, IEEE Electron Device Lett., EDL-6, pp. 186– 188 (1985).

    Google Scholar 

  69. J. Y.-C. Sun, M. R. Wordeman, and S. E. Laux, ’On the accuracy of channel length characterization of LDD MOSFETs’, IEEE Trans. Electron Devices, ED-33, pp. 1556–1562 (1986).

    Google Scholar 

  70. D. J. Mountain, ’Application of electrical effective channel length and external resistance measurement techniques to a submicrometer CMOS process’, IEEE Trans. Electron Devices, ED-36, pp. 2499–2505 (1989).

    Google Scholar 

  71. G. J. Hu, C. Chang, and Y. T. Chia, ’Gate-voltage-dependent effective channel length and series resistance of LDD MOSFETs’, IEEE Trans. Electron Devices, ED-34, pp. 2469–2475 (1987).

    Google Scholar 

  72. J. Ida, A. Kita, and F. Ichikawa, ’Accurate characterization of gate-N-overlapped LDD with the new Leff extraction method’, IEEE IEDM, Tech. Dig. ,pp. 219–222 (1990).

    Google Scholar 

  73. K. L. Peng, and M. A. Afromowitz, ’An improved method to determine MOSFET channel length’, IEEE Electron Device Lett., EDL-3, pp. 360–362 (1982).

    Google Scholar 

  74. J. Whitfield, ’A modification on an improved method to determine MOSFET channel length’, IEEE Electron Device Lett., EDL-6, pp. 109–110 (1985).

    Google Scholar 

  75. J. H. Satter, ’Effective length and width of MOSFETs determined with three transistors’, Solid-State Electron., 30, pp. 821–828 (1987).

    Google Scholar 

  76. D. Takacs, W. Muller, and U. Schwabe, ’Electrical measurement of feature sizes in MOS Si-gate VLSI technology,’ IEEE Trans. Electron Devices, ED-27, pp. 1368– 1373 (1980).

    Google Scholar 

  77. K. L. Peng, S. Y. Oh, M. A. Afromowitz, and J. L. Moll, ’Basic parameter measurement and channel broadening effect in the submicron MOSFET,’ IEEE Electron Device Lett., EDL-5, pp. 473–475 (1984).

    Google Scholar 

  78. C. Hao, B. Cabon-Till, S. Cristoloveanu, and G. Ghibaudo, ’Experimental determination of short-channel MOSFET parameters’, Solid-State Electron., 28, pp. 1025–1030 (1985).

    Google Scholar 

  79. L. Chang and J. Berg, ’A derivative method to determine a MOSFETs effective channel length and width electrically’, IEEE Electron Device Lett., EDL-7, pp. 229– 231 (1986).

    Google Scholar 

  80. D. Takacs, W. Muller, and U. Schwabe , ’Electrical measurement of feature sizes in MOS Si-gate VLSI technology’, IEEE Trans. Electron Devices, ED-27, pp. 1368–1373 (1980).

    Google Scholar 

  81. P. P. Suciu and R. L. Johnston, ’Experimental derivation of the source and drain resistance of MOS transistors’, IEEE Trans. Electron Devices, ED-27, pp. 1556– 1162(1980).

    Google Scholar 

  82. F. H. De La Moneda, H. N. Kotecha, and M. Shatzkes, ’Measurement of MOSFET constant’, IEEE Electron Device Lett., EDL-3, pp. 10–12 (1982).

    Google Scholar 

  83. G. Krieger, R. Sikora, P. P. Cuevas, and M. N. Misheloff, ’Moderately doped NMOS(M-LDD)-hot electron and current drive optimization’, IEEE Trans. Electron Devices, ED-38, pp. 121–127 (1991).

    Google Scholar 

  84. G. Ghibaudo, ’New method for the extraction of MOSFET parameters’, Electronic Letters, 24, pp. 543–545, 28th April 1988.

    Google Scholar 

  85. Y. R. Ma and K. L. Wang, ’A new method to electrically determine effective MOSFET channel width’, IEEE Trans. Electron Devices, ED-29, pp. 1825–1827 (1982).

    Google Scholar 

  86. B. J. Sheu and P. K. Ko, ’A simple method to determine channel widths for conventional and LDD MOSFETs’, IEEE Electron Device Lett., EDL-5, pp. 485–486 (1984).

    Google Scholar 

  87. N. D. Arora, L. A. Bair, and L. M. Richardson, ’A new method to determine the MOSFET effective channel width’, IEEE Trans. Electron Devices, ED-37, pp. 811–814 (1990).

    Google Scholar 

  88. P. Vitanov, U. Schwabe, and I. Eisele, ’Electrical characterization of feature sizes and parasitic capacitances using a single structure’, IEEE Trans. Electron Devices, ED-31, pp. 96–100 (1984).

    Google Scholar 

  89. E. J. Korma, K. Visser, J. Snijder, and J. F. Verwey, ’Fast determination of the effective channel length and the gate oxide thickness in polycrystalline silicon MOSFETs’, IEEE Electron Device Lett., EDL-5, pp. 368–370 (1984).

    Google Scholar 

  90. B. J. Sheu and P. K. Ko, ’A capacitance method to determine channel lengths for conventional and LDD MOSFETs’, IEEE Electron Device Lett., EDL-5, pp. 491–493 (1984).

    Google Scholar 

  91. C. T. Yao, I. A. Mack, and H. C. Lin, ’Accuracy of effective channel-length extraction using the capacitance method’, IEEE Electron Device Lett., EDL-7, pp. 268–270 (1986).

    Google Scholar 

  92. J. Scarpulla, T. C. Mele, and J. P. Krusius, ’Accurate criterion for MOSFET effective gate length extraction using the capacitance method’, IEEE IEDM, Tech. Dig. ,pp. 722–725 (1987).

    Google Scholar 

  93. N. D. Arora, D. A. Bell, and L. A. Bair, ’An accurate method of determining MOSFET gate overlap capacitance’, Solid-State Electron., 35, pp. 1817–1822 (1992).

    Google Scholar 

  94. P. Antognetti, C. Lombardi, and D. Antoniadis, ’Use of process and 2-D MOS simulation in the study of doping profile influence on S/D resistance in short channel MOSFETs’, IEDM, Tech. Digest ,pp. 574–577 (1981).

    Google Scholar 

  95. M. H. Seavey, ’Source and drain resistance determination for MOSFETs’, IEEE Electron Device Lett., EDL-5, pp. 479–481 (1984).

    Google Scholar 

  96. K. K. Ng and W. T. Lynch, ’Analysis of the gate-voltage dependent series resistance of MOSFETs’, IEEE Trans. Electron Devices, ED-33, pp. 965–972 (1986).

    Google Scholar 

  97. A. Vladimirescu and S. Liu, ’The simulation of MOS integrated circuits using SPICE2’, Memorandum No. UCB/ERL M80/7, Electronics Research Laboratory, University of California, Berkeley, October 1980.

    Google Scholar 

  98. T. Y. Chan, P. K. Ko, and C. Hu, ’A simple method to characterize substrate current in MOSFETs’, IEEE Trans. Electron Device Lett., EDL-5, pp. 505–507 (1984).

    Google Scholar 

  99. D. Lau, G. Gildenblat, C. G. Sodini, and D. E. Nelsen, ’Low temperature substrate current characterization of n-channel MOSFETs’, IEEE-IEDM85, Technical Digest ,pp. 565–568 (1985).

    Google Scholar 

  100. R. V. H. Booth and M. H. White, ’An experimental method for determination of the saturation point of a MOSFET’, IEEE Trans. Electron Devices, ED-31, pp. 247–251 (1984).

    Google Scholar 

  101. W. Y. Jang, C. Y. Wu, and H. J. Wu, ’A new experimental method to determine the saturation voltage of a small-geometry MOSFET’, Solid-State Electronic, 31, pp. 1421–1431 (1988).

    Google Scholar 

  102. H. Iwai and S. Kohyama, ’On-chip capacitance measurement circuits in VLSI structures’, IEEE Trans. Electron Devices, ED-29, pp. 1622–1626 (1982).

    Google Scholar 

  103. J. Oristian, H. Iwai, J. Walker, and R. Dutton, ’Small geometry MOS transistor capacitance measurements method using simple on-chip circuit’, IEEE Electron Device Lett., EDL-5, pp. 395–397 (1984).

    Google Scholar 

  104. H. Iwai, J. Oristian, J. Walker, and R. Dutton, ’A scaleable technique for the measurements of intrinsic MOS capacitance with atto-Farad range’, IEEE Trans. Electron Devices, ED-32, pp. 344–356 (1985).

    Google Scholar 

  105. J. J. Paulous, ’Measurement of minimum-geometry MOS transistor capacitances’, ED-32, pp. 357–363 (1985).

    Google Scholar 

  106. C. T. Yao and H. C. Lin, ’Comments on small geometry MOS transistor capacitance measurements method using simple on-chip circuit’, IEEE Electron Device Lett., EDL-6, p. 63 (1985).

    Google Scholar 

  107. J. Oristian, H. Iwai, J. Walker, and R. Dutton, ’A reply to comments on “small geometry MOS transistor capacitance measurements method using simple on-chip circuit”’, IEEE Electron Device Lett., EDL-6, pp. 64–67 (1985).

    Google Scholar 

  108. J. J. Paulos and D. A. Antoniadis, ’Measurement of minimum geometry MOS transistor capacitances’, IEEE Trans. Electron Devices, ED-32, pp. 357–363 (1985). Also see J. J. Paulos, ’Measurement and modeling of small geometry MOS transistor capacitance’, Ph.D thesis ,Massachusetts Institute of Technology, Cambridge, 1984.

    Google Scholar 

  109. M. Furukawa, H. Hatano, and K. Hanihara,, ’Precision measurement technique of integrated MOS capacitor mismatching using a simple on-chip circuit’, IEEE Trans. Electron Devices, ED-33, pp. 938–944 (1986).

    Google Scholar 

  110. K. C. K. Weng and P. Yang, ’A direct measurement technique for small geometry MOS transistor capacitances’, IEEE Electron Device Lett., EDL-6, pp. 40–42 (1985).

    Google Scholar 

  111. H. Ishiuchi, Y. Matsumoto, S. Sawada, and O. Ozawa, ’Measurement of intrinsic capacitance of lightly doped drain (LDD) MOSFET’s’, IEEE Trans. Electron Devices, ED-32, pp. 2238–2242 (1985).

    Google Scholar 

  112. Y. T. Yeow, ’Measurement and numerical modeling of short channel MOSFET gate capacitances’, IEEE Trans. Electron Devices, ED-35, pp. 2510–2519 (1987).

    Google Scholar 

  113. B.J. Sheu and P. K. Ko, ’Measurement and modeling of short-channel MOS transistor gate capacitances’, IEEE J. Solid-State Circuits, SC-22, pp. 464–472 (1987).

    Google Scholar 

  114. P. Leclaire, ’High resolution intrinsic MOS capacitance measurement system’, EESDERC 1987, Tech. Digest. ,pp. 699–702 (1987).

    Google Scholar 

  115. C. T. Yao, ’Measurement and modeling of intrinsic terminal capacitances of a metal-oxide-semiconductor field effect transistor’, Ph.D. Thesis ,University of Maryland.

    Google Scholar 

  116. T. Y. Chan, A. T. Wu, P. K. Ko, and C. Hu, ’A capacitance method to determine the gate-to-drain/source overlap length of MOSFET’s’, IEEE Electron Device Lett., EDL-8, pp. 269–271 (1987).

    Google Scholar 

  117. J. Scarpulla, T. C. Mele, and J. P. Krusius, ’Accurate criterion for MOSFET effective gate length extraction using the capacitance method’, IEEE IEDM, Tech. Dig. ,pp. 722–725 (1987).

    Google Scholar 

  118. C. S. Oh, W. H. Chang, B. Davari, and Y. Tur, ’Voltage dependence of the MOSFET gate-to-source/drain overlap’, Solid-State Electron., 33, pp. 1650–1652 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag/Wien

About this chapter

Cite this chapter

Arora, N. (1993). Data Acquisition and Model Parameter Measurements. In: MOSFET Models for VLSI Circuit Simulation. Computational Microelectronics. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9247-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9247-4_9

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-9249-8

  • Online ISBN: 978-3-7091-9247-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics