Advertisement

Data Acquisition and Model Parameter Measurements

  • Narain Arora
Part of the Computational Microelectronics book series (COMPUTATIONAL)

Abstract

The accuracy of the device model predictions of the device characteristics are fully dependent on the model parameter values being used. Most of the circuit models discussed in the previous chapters are semi-empirical analytical models. These models always contain some fitting parameters that do not have physically well defined values, and very often physical values of model parameters do not always give the best fit to the actual device characteristics. For this reason, device model parameters are determined from the device data obtained from electrical measurement on different length and width devices and under different bias conditions. Collecting measured data and processing these data to accurately determine model parameter values is an essential task for the complete characterization of a transistor model for use in the circuit simulator.

Keywords

Threshold Voltage Gate Voltage Channel Length Parasitic Capacitance Doping Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology ,John Wiley & Sons, New York, 1982.Google Scholar
  2. [2]
    R. C. Y. Fang, R. D. Rung, and K. M. Cham, ’An improved automatic test system for VLSI parameteric testing’, IEEE Trans. Instrumentation and Measurement, IM-31, pp. 198–205 (1982).Google Scholar
  3. [3]
    B. S. Messenger, ’A fully automated MOS device characterization system for process-oriented integrated circuit design’, Memorandum No. UCB/ERL M84/18, Electronic Research Laboratory, University of California, Berkeley, January 1984.Google Scholar
  4. [4]
    O. Melstrand, E. O’Neill, G. E. Sobelman, and D. Dokos, ’A data base driven automated system for MOS device characterization, parameter optimization and modeling’, IEEE Trans. Computer-Aided Design, CAD-3, pp. 47–51 (1984).Google Scholar
  5. [5]
    E. Khalily, P. H. Decher, and D. A. Teegarden, TECAP2: An interactive device characterization and model development system’, Tech. Digest ,IEEE Int. Conf. on Computer-Aided Design, ICCAD-84, pp. 184–151 (1984).Google Scholar
  6. [6]
    K. Doganis and S. Hailey, ’A unified physical device modeling environment’, IEEE 1986 Custom Integrated Circuit Conference, pp. 203–207 (1986).Google Scholar
  7. [7]
    D. Cheung, A. Clark, and R. Starr, ’The INMOS integrated parameteric test and analysis system’, Proc. IEEE Int. Conf. on Microelectronic Test Structures, Vol. 2, No. 1, pp. 45–50, March 1989.Google Scholar
  8. [8]
    Operation and Service Manual for Model 4145B Semiconductor Parameter Analyzer, Hewlett Packard Corporation, USA, 1986.Google Scholar
  9. [9]
    Operating Manual for Model 4275A Multi-Frequency LCR Meter, Hewlett Packard Corporation, USA, 1983.Google Scholar
  10. [10]
    Operation and Service Manual for Model 4MOB pA Meter/DC Voltage Source, Hewlett Packard Corporation, USA, 1980.Google Scholar
  11. [11]
    Y. Nissan-Cohen, ’A novel floating-gate method for measurement of ultra-low hole and electron gate currents in MOS transistors,’ IEEE Electron Device Lett., EDL-7, pp. 561–563 (1982).Google Scholar
  12. [12]
    N. S. Sakas, P. L. Heremans, L. Van Den Hove, H. E. Maes, R. F. De Keersmaecker, and G. J. Declerck, ’Observation of hot-hole injection in NMOS transistors using a modified floating-gate technique’, IEEE Trans. Electron Devices, ED-33, pp. 1529– 1533 (1986).Google Scholar
  13. [13]
    G. B. Barbottin and A. Vapaille, Eds., Instabilities in Silicon Devices ,Vol II (Chapter 12), North-Holland, New York, 1989.Google Scholar
  14. [13a]
    K. R. Mistry and B. Doyle, ’AC versus DC hot-carrier degradation in n-channel MOSFETs’, IEEE Trans. Electron Devices, ED-40, pp. 96–104 (1993).Google Scholar
  15. [14]
    W. W. Lin and P. C. Chan, ’On the measurement of parasitic capacitances of device with more than two external terminals using an LCR meter,’ IEEE Trans. Electron Devices, ED-38, pp. 2573–2574 (1991).Google Scholar
  16. [15]
    D. K. Schroder, Semiconductor Material and Device Characterization ,John Wiley & Sons Inc., New York, 1990.Google Scholar
  17. [16]
    E. H. Nicollian and J. R. Brews, ’Instrumentation and analog implementation of Q-C method of MOS measurement’, Solid-State Electron., 27, pp. 953–962 (1984). See also related papers, ibid ,pp. 963–975 and pp. 977–988 (1984).Google Scholar
  18. [17]
    M. Kuhn, ’A quasi-static technique for MOS C-V and surface state measurements’, Solid-State Electron., 13, pp. 873–885 (1970).Google Scholar
  19. [18]
    K. Iniewski, A. Balasinski, B. Majkusiak, R. B. Beck, and A. Jakubowski, ’Series resistance in a MOS capacitor with a thin gate oxide’, Solid-State Electron., 32, pp. 137–140 (1989).Google Scholar
  20. [19]
    K. Riedling, Ellipsometry for Industrial Applications ,Springer-Verlag, New York, 1988.Google Scholar
  21. [20]
    M. J. McNutt and C. T. Sah, ’Determination of the MOS Oxide capacitance’, J. Appl. Phys., 46, pp. 3909–3913 (1975).Google Scholar
  22. [21]
    D. Schmitt-Landsiedel, K. R. Hofmann, H. Oppolzer, and G. Dorda, ’Thickness determination of thin oxides in MOS structures,’ in Insulating Films on Semiconductors (J. F. Verweij and D. R. Wolters, eds.), pp. 126, North-Holland, New York, 1983.Google Scholar
  23. [22]
    B. Ricco, P. Olivo, T. N. Nguyen, T. S. Kuan, and G. Ferriani, ’Oxide-thickness determination in thin-insulator MOS structures’, IEEE Trans. Electron Devices, ED-35, pp. 432–438 (1988).Google Scholar
  24. [23]
    G. Sarrabayrouse, F. Campabadal, J. L. Prom, ’Oxide-thickness determination from C/V measurement in an MOS capacitor,’ IEE Proceedings, 136, Pt. G, pp. 215– 216 (1989).Google Scholar
  25. [24]
    B. Majkusiak and A. Jakubowski, ’A technical formula for determining the insulator capacitance in a MOS structure’, Solid-State Electron., 35, pp. 223–224 (1992).Google Scholar
  26. [25]
    A. Savitzky and M. J. E. Golay, ’Smoothing and differentiation of data by simplified least squares procedures’, Anal. Chem., 36, pp. 1627–1639 (1964).Google Scholar
  27. [26]
    H. Maes, W. Vandervorst, and R. van Overstraeten, ’Impurity profile of implanted ions in silicon’, in Impurity Doping Processes in Silicon (F. F. Y. Wang, Ed.), North-Holland, New York, 1981.Google Scholar
  28. [27]
    N. D. Arora, D. J. Roulston, and S. G. Chamberlain, ’Distribution profiles of diffused layers in silicon’, Solid-State Electron., 25, pp. 965–967 (1982).Google Scholar
  29. [28]
    W. Vandervorst and T. Clarysse, ’Recent developments in the interpretation of spreading resistance profiles for VLSI technology’, J. Electrochem. Soc., 137, pp. 679–683 (1990).Google Scholar
  30. [29]
    A. Jakubowski and K. Iniewski, ’Simple formula for analysis of C-V characteristics of MIS capacitor’, Solid-State Electron., 26, pp. 755–756 (1983).Google Scholar
  31. [30]
    D. M. Brown, R. J. Conney, and P. V. Gray, ’Doping profiles by MOSFET deep depletion CV, J. Electrochem. Soc., 122, pp. 121–127 (1975).Google Scholar
  32. [31]
    K. Ziegler, E. Klausmann, and S. Karr, ’Determination of the semiconductor doping profile right up to its surface using MIS capacitor’, Solid-State Electron, 18, pp. 189–198 (1975).Google Scholar
  33. [32]
    S. H. Lin and J. Reuter, The complete doping profile using MOS CV technique’, Solid-State Electron., 26, pp. 343–351 (1983).Google Scholar
  34. [33]
    G. Baccarani, H. Rudan, G. Spaini, H. Maes, W. V. Ander Vorst, and R. Van Overstraeten, ’Interpretation of C-V measurements for determining the doping profile in semiconductors’, Solid-State Electron., 23, pp. 65–71 (1980).Google Scholar
  35. [34]
    C. P. Wu, E. C. Douglas, and C. W. Mueller, ’Limitations of the C-V technique for ion-implanted profiles’, IEEE Trans. Electron Devices, ED-22, pp. 319–329 (1975).Google Scholar
  36. [35]
    B. J. Gordon, ’On-line capacitance-voltage doping profile measurement’, IEEE Trans. Electron Devices, ED-27, pp. 2268–2272 (1980).Google Scholar
  37. [36]
    K. Lehovec, ’C-V profiling of steep dopant distribution’, Solid-State Electron., 27, pp. 1097–1105(1984).Google Scholar
  38. [37]
    I. G. McGillivray, J. M. Robertson, and A. J. Walton, ’Improved measurement of doping profile in silicon using CV techniques’, IEEE Trans. Electron Devices, ED-35, pp. 174–179 (1988).Google Scholar
  39. [38]
    K. Iniewski and C. A. T. Salama, ’A new approach to CV profiling with sub-debye-length resolution,’ Solid-State Electron., 34, pp. 309–314 (1991).Google Scholar
  40. [39]
    G. Lubberts, ’Rapid determination of semiconductor doping and flatband voltage in large MOSFETs’, J. Appl. Phys., 48, pp. 5355–5356 (1977).Google Scholar
  41. [40]
    J. A. Wikstrom and C. R. Viswanathan, ’A direct depletion capacitance measurement technique to determine the doping profile under the gate of a MOSFET’, IEEE Trans. Electron Devices, ED-34, pp. 2217–2219 (1987).Google Scholar
  42. [41]
    M. Shannon, ’DC measurement of the space charge capacitance and impurity profile beneath the gate of an MOST’, Solid-State Electron., 14, pp. 1099–1106 (1971).Google Scholar
  43. [42]
    M. G. Buchler, ’Dopant profiles determined from enhancement-mode MOSFET DC measurements’, Appl. Phys. Lett., 31, pp. 848–850 (1977).Google Scholar
  44. [43]
    M. H. Chi and C. M. Hu, ’Errors in threshold-voltage measurements of MOS transistors for dopant-profile determinations’, Solid-State Electron., 24, pp. 313–316 (1981).Google Scholar
  45. [44]
    G. P. Carver, ’Influence of short-channel effects on dopant profiles obtained from the DC MOSFET profile method’, IEEE Trans. Electron Devices, ED-30, pp. 948–953 (1983).Google Scholar
  46. [45]
    N. Kasai, N. Endo, A. Ishitani, and Y. Kurogi, ’Impurity profile measurement using VT-VSB characteristics,’ NEC Res. & Develop., 74, pp. 109–114 (1984).Google Scholar
  47. [46]
    K. Iniewski and A. Jakubowski, ’A new method for the determination of channel depth and doping profile in buried-channel MOS transistors’, Solid-State Electron., 31, pp. 1259–1264(1988).Google Scholar
  48. [47]
    D. W. Feldbaumer and D. K. Schroder, ’MOSFET doping profiling’, IEEE Trans. Electron Devices, ED-18, pp. 135–139 (1991).Google Scholar
  49. [48]
    H. G. Lee, S. Y. Oh, and G. Fuller, ’A Simple and accurate method to measure the threshold voltage of an enhancement-mode MOSFET’, IEEE Trans. Electron Dev., ED-29, pp. 346–348 (1982).Google Scholar
  50. [49]
    H. S. Wong, M. H. White, T. J. Krutsick, and R. V. Booth, ’Modeling of transconduc-tance degradation and extraction of threshold voltage in thin oxide MOSFETs’, Solid-State Electron., 30, pp. 953–968 (1987).Google Scholar
  51. [50]
    R. V. Booth, H. S. Wong, M. H. White, and T. J. Krutsick, ’The effect of channel implants on MOS transistor characterization’, IEEE Trans. Electron Devices, ED-34, pp. 2501–2508 (1987).Google Scholar
  52. [51]
    S. Jain, ’Measurement of threshold voltage and channel length of submicron MOSFETs’, Proc. IEE, Pt. I, 135, pp. 162–164 (1988).Google Scholar
  53. [52]
    M. J. Deen and Z. X. Yan, ’A new method for measuring the threshold voltage of small-geometry MOSFETs from subthreshold conduction’, Solid-State Electron., 33, pp. 503–511 (1990).Google Scholar
  54. [53]
    C. G. Sodini, T. W. Ekstedt, and J. L. Moll, ’Charge accumulation and mobility in thin dielectric MOS transistors’, Solid-State Electron., 25, pp. 833–841 (1982).Google Scholar
  55. [54]
    N. D. Arora and G. Sh. Gildenblat, ’A semi-empirical model of the MOSFET inversion layer mobility for low-temperature operation, IEEE Trans. Electron Devices, ED-34, pp. 89–93 (1987).Google Scholar
  56. [55]
    J. Kooman, ’Investigation of MOST channel conductance in week inversion’, Solid-State Electron., 16, pp. 801–810 (1973).Google Scholar
  57. [56]
    M. S. Liang, J. Y. Choi, P. K. Ko, and C. M. Hu, ’Inversion-layer capacitance and mobility of very thin gate-oxide MOSFETs’, IEEE Trans. Electron Devices, ED-33, pp. 409–413(1986).Google Scholar
  58. [57]
    P.-M. D. Chow and K.-L. Wang, ’A new AC technique for accurate determination of channel charge and mobility in very thin gate MOSFETs’, IEEE Trans. Electron Devices, ED-33, pp. 1299–1304 (1986).Google Scholar
  59. [58]
    G. Sh. Gildenblat, C.-L. Huang, and N. D. Arora, ’Split C-V measurements of low temperature MOSFET inversion layer mobility,’ Cryogenics, 29, pp. 1163–1166 (1989)Google Scholar
  60. [58a]
    C. L. Huang, J. Faricelli, and N. D. Arora, ’A new technique for measuring MOSFET inversion layer mobility’, IEEE Trans. Electron Devices, ED-40, pp. 1134–1139 (1993).Google Scholar
  61. [59]
    A. Hairapetian, D. Gitlin, and C. R. Viswanathan, ’Low-temperature mobility measurements on CMOS devices’, IEEE Trans. Electron Devices, ED-36, pp. 1448–1445 (1989).Google Scholar
  62. [60]
    K. Terada and H. Muta, ’A new method to determine effective MOSFET channel length’, Japanese J. Appl. Phys., 18, pp. 953–959 (1979).Google Scholar
  63. [61]
    J. G. J. Chern, P. Chang, R. F. Motta, and N. Godinho, ’A new method to determine MOSFET channel length’, IEEE Electron Device Lett., EDL-1, pp. 170–173 (1980).Google Scholar
  64. [62]
    S. E. Laux, ’Accuracy of an effective channel length/external resistance extraction algorithm for MOSFETs’, ED-31, pp. 1245–1251 (1984).Google Scholar
  65. [63]
    J. Scarpulla and J. P. Krusius, ’Improved statistical method for extraction of MOSFET effective channel length and resistance’, IEEE Trans. Electron Devices, ED-34, pp. 1354–1359 (1987).Google Scholar
  66. [64]
    B. J. Sheu, C. Hu, P. K. Ko, and F.-C. Hsu, ’Source-and-drain series resistance of LDD MOSFETs’, IEEE Electron Device Lett., EDL-5, pp. 365–367 (1984).Google Scholar
  67. [65]
    K. K. Ng and J. R. Brews, ’Measuring the effective channel length of MOSFETs’, IEEE Circuits and Devices Magazine, 6, pp. 33–38, Nov. 1990.Google Scholar
  68. [66]
    M. R. Wordeman, J. Y.-C. Sun, and S. E. Laux, ’Geometry effects in MOSFET channel length extraction algorithms’, IEEE Electron Device Lett., EDL-6, pp. 186– 188 (1985).Google Scholar
  69. [67]
    J. Y.-C. Sun, M. R. Wordeman, and S. E. Laux, ’On the accuracy of channel length characterization of LDD MOSFETs’, IEEE Trans. Electron Devices, ED-33, pp. 1556–1562 (1986).Google Scholar
  70. [68]
    D. J. Mountain, ’Application of electrical effective channel length and external resistance measurement techniques to a submicrometer CMOS process’, IEEE Trans. Electron Devices, ED-36, pp. 2499–2505 (1989).Google Scholar
  71. [69]
    G. J. Hu, C. Chang, and Y. T. Chia, ’Gate-voltage-dependent effective channel length and series resistance of LDD MOSFETs’, IEEE Trans. Electron Devices, ED-34, pp. 2469–2475 (1987).Google Scholar
  72. [70]
    J. Ida, A. Kita, and F. Ichikawa, ’Accurate characterization of gate-N-overlapped LDD with the new Leff extraction method’, IEEE IEDM, Tech. Dig. ,pp. 219–222 (1990).Google Scholar
  73. [71]
    K. L. Peng, and M. A. Afromowitz, ’An improved method to determine MOSFET channel length’, IEEE Electron Device Lett., EDL-3, pp. 360–362 (1982).Google Scholar
  74. [72]
    J. Whitfield, ’A modification on an improved method to determine MOSFET channel length’, IEEE Electron Device Lett., EDL-6, pp. 109–110 (1985).Google Scholar
  75. [73]
    J. H. Satter, ’Effective length and width of MOSFETs determined with three transistors’, Solid-State Electron., 30, pp. 821–828 (1987).Google Scholar
  76. [74]
    D. Takacs, W. Muller, and U. Schwabe, ’Electrical measurement of feature sizes in MOS Si-gate VLSI technology,’ IEEE Trans. Electron Devices, ED-27, pp. 1368– 1373 (1980).Google Scholar
  77. [75]
    K. L. Peng, S. Y. Oh, M. A. Afromowitz, and J. L. Moll, ’Basic parameter measurement and channel broadening effect in the submicron MOSFET,’ IEEE Electron Device Lett., EDL-5, pp. 473–475 (1984).Google Scholar
  78. [76]
    C. Hao, B. Cabon-Till, S. Cristoloveanu, and G. Ghibaudo, ’Experimental determination of short-channel MOSFET parameters’, Solid-State Electron., 28, pp. 1025–1030 (1985).Google Scholar
  79. [77]
    L. Chang and J. Berg, ’A derivative method to determine a MOSFETs effective channel length and width electrically’, IEEE Electron Device Lett., EDL-7, pp. 229– 231 (1986).Google Scholar
  80. [78]
    D. Takacs, W. Muller, and U. Schwabe , ’Electrical measurement of feature sizes in MOS Si-gate VLSI technology’, IEEE Trans. Electron Devices, ED-27, pp. 1368–1373 (1980).Google Scholar
  81. [79]
    P. P. Suciu and R. L. Johnston, ’Experimental derivation of the source and drain resistance of MOS transistors’, IEEE Trans. Electron Devices, ED-27, pp. 1556– 1162(1980).Google Scholar
  82. [80]
    F. H. De La Moneda, H. N. Kotecha, and M. Shatzkes, ’Measurement of MOSFET constant’, IEEE Electron Device Lett., EDL-3, pp. 10–12 (1982).Google Scholar
  83. [81]
    G. Krieger, R. Sikora, P. P. Cuevas, and M. N. Misheloff, ’Moderately doped NMOS(M-LDD)-hot electron and current drive optimization’, IEEE Trans. Electron Devices, ED-38, pp. 121–127 (1991).Google Scholar
  84. [82]
    G. Ghibaudo, ’New method for the extraction of MOSFET parameters’, Electronic Letters, 24, pp. 543–545, 28th April 1988.Google Scholar
  85. [83]
    Y. R. Ma and K. L. Wang, ’A new method to electrically determine effective MOSFET channel width’, IEEE Trans. Electron Devices, ED-29, pp. 1825–1827 (1982).Google Scholar
  86. [84]
    B. J. Sheu and P. K. Ko, ’A simple method to determine channel widths for conventional and LDD MOSFETs’, IEEE Electron Device Lett., EDL-5, pp. 485–486 (1984).Google Scholar
  87. [85]
    N. D. Arora, L. A. Bair, and L. M. Richardson, ’A new method to determine the MOSFET effective channel width’, IEEE Trans. Electron Devices, ED-37, pp. 811–814 (1990).Google Scholar
  88. [86]
    P. Vitanov, U. Schwabe, and I. Eisele, ’Electrical characterization of feature sizes and parasitic capacitances using a single structure’, IEEE Trans. Electron Devices, ED-31, pp. 96–100 (1984).Google Scholar
  89. [87]
    E. J. Korma, K. Visser, J. Snijder, and J. F. Verwey, ’Fast determination of the effective channel length and the gate oxide thickness in polycrystalline silicon MOSFETs’, IEEE Electron Device Lett., EDL-5, pp. 368–370 (1984).Google Scholar
  90. [88]
    B. J. Sheu and P. K. Ko, ’A capacitance method to determine channel lengths for conventional and LDD MOSFETs’, IEEE Electron Device Lett., EDL-5, pp. 491–493 (1984).Google Scholar
  91. [89]
    C. T. Yao, I. A. Mack, and H. C. Lin, ’Accuracy of effective channel-length extraction using the capacitance method’, IEEE Electron Device Lett., EDL-7, pp. 268–270 (1986).Google Scholar
  92. [90]
    J. Scarpulla, T. C. Mele, and J. P. Krusius, ’Accurate criterion for MOSFET effective gate length extraction using the capacitance method’, IEEE IEDM, Tech. Dig. ,pp. 722–725 (1987).Google Scholar
  93. [91]
    N. D. Arora, D. A. Bell, and L. A. Bair, ’An accurate method of determining MOSFET gate overlap capacitance’, Solid-State Electron., 35, pp. 1817–1822 (1992).Google Scholar
  94. [92]
    P. Antognetti, C. Lombardi, and D. Antoniadis, ’Use of process and 2-D MOS simulation in the study of doping profile influence on S/D resistance in short channel MOSFETs’, IEDM, Tech. Digest ,pp. 574–577 (1981).Google Scholar
  95. [93]
    M. H. Seavey, ’Source and drain resistance determination for MOSFETs’, IEEE Electron Device Lett., EDL-5, pp. 479–481 (1984).Google Scholar
  96. [94]
    K. K. Ng and W. T. Lynch, ’Analysis of the gate-voltage dependent series resistance of MOSFETs’, IEEE Trans. Electron Devices, ED-33, pp. 965–972 (1986).Google Scholar
  97. [95]
    A. Vladimirescu and S. Liu, ’The simulation of MOS integrated circuits using SPICE2’, Memorandum No. UCB/ERL M80/7, Electronics Research Laboratory, University of California, Berkeley, October 1980.Google Scholar
  98. [96]
    T. Y. Chan, P. K. Ko, and C. Hu, ’A simple method to characterize substrate current in MOSFETs’, IEEE Trans. Electron Device Lett., EDL-5, pp. 505–507 (1984).Google Scholar
  99. [97]
    D. Lau, G. Gildenblat, C. G. Sodini, and D. E. Nelsen, ’Low temperature substrate current characterization of n-channel MOSFETs’, IEEE-IEDM85, Technical Digest ,pp. 565–568 (1985).Google Scholar
  100. [98]
    R. V. H. Booth and M. H. White, ’An experimental method for determination of the saturation point of a MOSFET’, IEEE Trans. Electron Devices, ED-31, pp. 247–251 (1984).Google Scholar
  101. [99]
    W. Y. Jang, C. Y. Wu, and H. J. Wu, ’A new experimental method to determine the saturation voltage of a small-geometry MOSFET’, Solid-State Electronic, 31, pp. 1421–1431 (1988).Google Scholar
  102. [100]
    H. Iwai and S. Kohyama, ’On-chip capacitance measurement circuits in VLSI structures’, IEEE Trans. Electron Devices, ED-29, pp. 1622–1626 (1982).Google Scholar
  103. [101]
    J. Oristian, H. Iwai, J. Walker, and R. Dutton, ’Small geometry MOS transistor capacitance measurements method using simple on-chip circuit’, IEEE Electron Device Lett., EDL-5, pp. 395–397 (1984).Google Scholar
  104. [102]
    H. Iwai, J. Oristian, J. Walker, and R. Dutton, ’A scaleable technique for the measurements of intrinsic MOS capacitance with atto-Farad range’, IEEE Trans. Electron Devices, ED-32, pp. 344–356 (1985).Google Scholar
  105. [103]
    J. J. Paulous, ’Measurement of minimum-geometry MOS transistor capacitances’, ED-32, pp. 357–363 (1985).Google Scholar
  106. [104]
    C. T. Yao and H. C. Lin, ’Comments on small geometry MOS transistor capacitance measurements method using simple on-chip circuit’, IEEE Electron Device Lett., EDL-6, p. 63 (1985).Google Scholar
  107. [105]
    J. Oristian, H. Iwai, J. Walker, and R. Dutton, ’A reply to comments on “small geometry MOS transistor capacitance measurements method using simple on-chip circuit”’, IEEE Electron Device Lett., EDL-6, pp. 64–67 (1985).Google Scholar
  108. [106]
    J. J. Paulos and D. A. Antoniadis, ’Measurement of minimum geometry MOS transistor capacitances’, IEEE Trans. Electron Devices, ED-32, pp. 357–363 (1985). Also see J. J. Paulos, ’Measurement and modeling of small geometry MOS transistor capacitance’, Ph.D thesis ,Massachusetts Institute of Technology, Cambridge, 1984.Google Scholar
  109. [107]
    M. Furukawa, H. Hatano, and K. Hanihara,, ’Precision measurement technique of integrated MOS capacitor mismatching using a simple on-chip circuit’, IEEE Trans. Electron Devices, ED-33, pp. 938–944 (1986).Google Scholar
  110. [108]
    K. C. K. Weng and P. Yang, ’A direct measurement technique for small geometry MOS transistor capacitances’, IEEE Electron Device Lett., EDL-6, pp. 40–42 (1985).Google Scholar
  111. [109]
    H. Ishiuchi, Y. Matsumoto, S. Sawada, and O. Ozawa, ’Measurement of intrinsic capacitance of lightly doped drain (LDD) MOSFET’s’, IEEE Trans. Electron Devices, ED-32, pp. 2238–2242 (1985).Google Scholar
  112. [110]
    Y. T. Yeow, ’Measurement and numerical modeling of short channel MOSFET gate capacitances’, IEEE Trans. Electron Devices, ED-35, pp. 2510–2519 (1987).Google Scholar
  113. [111]
    B.J. Sheu and P. K. Ko, ’Measurement and modeling of short-channel MOS transistor gate capacitances’, IEEE J. Solid-State Circuits, SC-22, pp. 464–472 (1987).Google Scholar
  114. [112]
    P. Leclaire, ’High resolution intrinsic MOS capacitance measurement system’, EESDERC 1987, Tech. Digest. ,pp. 699–702 (1987).Google Scholar
  115. [113]
    C. T. Yao, ’Measurement and modeling of intrinsic terminal capacitances of a metal-oxide-semiconductor field effect transistor’, Ph.D. Thesis ,University of Maryland.Google Scholar
  116. [114]
    T. Y. Chan, A. T. Wu, P. K. Ko, and C. Hu, ’A capacitance method to determine the gate-to-drain/source overlap length of MOSFET’s’, IEEE Electron Device Lett., EDL-8, pp. 269–271 (1987).Google Scholar
  117. [115]
    J. Scarpulla, T. C. Mele, and J. P. Krusius, ’Accurate criterion for MOSFET effective gate length extraction using the capacitance method’, IEEE IEDM, Tech. Dig. ,pp. 722–725 (1987).Google Scholar
  118. [116]
    C. S. Oh, W. H. Chang, B. Davari, and Y. Tur, ’Voltage dependence of the MOSFET gate-to-source/drain overlap’, Solid-State Electron., 33, pp. 1650–1652 (1990).Google Scholar

Copyright information

© Springer-Verlag/Wien 1993

Authors and Affiliations

  • Narain Arora
    • 1
  1. 1.Digital Equipment CorporationHudsonUSA

Personalised recommendations