Dynamic Model

  • Narain Arora
Part of the Computational Microelectronics book series (COMPUTATIONAL)


The MOS transistor DC models developed in the last chapter are applicable when applied voltages do not vary with time. In this chapter we will develop transistor dynamic models which are applicable when the device terminal voltages are varying with time. The variation in the applied voltages, if sufficiently small, results in the small signal model. However, if the variation in the voltages is large, the large signal model results. Both types of models are required for a circuit simulator, as was discussed in Chapter 1.


Gate Voltage Strong Inversion Gate Capacitance Weak Inversion Bulk Charge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Y. P. Tsividis, Operation and Modeling of the MOS Transistor ,McGraw-Hill Book Company, New York, 1987.Google Scholar
  2. [2]
    J. Meyer, ’MOS models and circuit simulation’, RCA Review, 32, pp. 42–63 (1971).Google Scholar
  3. [3]
    D. Ward and R. W. Dutton, ’A charge-oriented model for MOS transistor capacitances’, IEEE J. Solid-State Circuits, SC-13, pp. 703–707 (1978). Also see D. Ward, ’Chargebased modeling of capacitances in MOS transistors’, Stanford University Tech. Rep., G201-11, 1982.CrossRefGoogle Scholar
  4. [4]
    S. Y Oh, D. E. Ward, and R. W. Dutton, ’Transient analysis of MOS transistors’, IEEE Trans. Electron Devices, ED-27, pp. 1571–1578 (1980).Google Scholar
  5. [5]
    M. F. Sevat, ’On the channel charge division in MOSFET modeling’, in: Digest of IEEE Int. Conf on Computer-Aided Design ,ICCAD-87, pp. 204–207 (1987).Google Scholar
  6. [6]
    G. W. Taylor, W. Fichtner, and J. G. Simmons, ’A description of MOS internodal capacitances for transient simulation’, IEEE Trans. Computer-Aided Design, CAD-1, pp. 150–156 (1982).CrossRefGoogle Scholar
  7. [7]
    P. Yang, B. D. Epler, and P. Chatterjee, ’An investigation of the charge conservation problem for MOSFET circuit simulation’, IEEE J. Solid-State Circuits, SC-18, pp. 128–138 (1983).CrossRefGoogle Scholar
  8. [8]
    K. Y. Tong, ’AC model for MOS transistors from transient-current computation’, IEE Proc., Vol. 130, Pt I, pp. 33–36 (1983).Google Scholar
  9. [9]
    J. G. Fossum, H. Jeong, and S. Veeraraghavan, ’Significance of the channel-charge portion in the transient MOSFET model’, IEEE Trans. Electron Devices, ED-33, pp. 1621–1623 (1986).CrossRefGoogle Scholar
  10. [10]
    B. J. Sheu, D. L. Scharfetter, C. M. Hu, and D. O. Pederson, ’A compact IGFET charge model’, IEEE Trans, on Circuits and Systems, CAS-31, pp. 745–748 (1984).CrossRefGoogle Scholar
  11. [11]
    P. Yang, ’Capacitance modeling for MOSFET’, in: Circuit Analysis, Simulation and Design (A. E. Ruehli, ed.), Elsevier, Amsterdam, 1986.Google Scholar
  12. [12]
    B. J. Sheu, W. J. Hsu, and P. K. Ko, ’An MOS transistor charge model for VLSI design’, IEEE Trans. Computer-Aided Design, CAD-7, pp. 520–527 (1988).CrossRefGoogle Scholar
  13. [13]
    H. Masuda, Y. Aoki, J. Mano, and O. Yamashiro, ’MOSTSM: A physically based charge conservative MOSFET model’, IEEE Trans. Computer-Aided Design, CAD-7, pp. 1229–1235 (1988).CrossRefGoogle Scholar
  14. [14]
    R. Gharabagi and A. El-Nokali, ’A model for the intrinsic gate capacitances of short-channel MOSFETYs’, Solid-State Electron., 32, pp. 57–63 (1989).CrossRefGoogle Scholar
  15. [15]
    R. Gharabagi and A. El-Nokali, ’A charge-based model for short-channel MOS transistor capacitances’, IEEE Trans. Electron Devices, ED-37, pp. 1064–1072(1990).CrossRefGoogle Scholar
  16. [16]
    C. Turchetti, P. Prioretti, G. Masetti, E. Profumo, and M. Vanzi, ’A Meyer-like approach for the transient analysis of digital MOS ICs’, IEEE Trans. Computer-Aided Design, CAD-5, pp. 499–506 (1986).CrossRefGoogle Scholar
  17. [17]
    M. A. Cirit, ’The Meyer model revisited: Why is charge not conserved?’, IEEE Trans. Computer-Aided Design, CAD-8, pp. 1033–1037 (1989).CrossRefGoogle Scholar
  18. [18]
    T. Smedes and F. M. Klaassen, Effects of the lightly doped drain configuration on capacitance characteristics of submicron MOSFETs’, IEEE IEDM-90, Technical Digest ,pp. 197–200 (1990). Also see T. Smedes, ’Compact modeling of the dynamic behavior of MOSFETs’, Ph.D. thesis ,1991, Technical University of Eindhoven, Eindhoven, The Netherlands.Google Scholar
  19. [19]
    K. A. Sakallah, Y. T. Yen, and S. S. Greenberg, ’A first order charge conserving MOS capacitor model’, IEEE Trans. Computer-Aided Design, CAD-9, pp. 99–108 (1990).CrossRefGoogle Scholar
  20. [20]
    J. J. Paulos and D. A. Antoniadis, ’Limitations of quasi-static capacitance models for the MOS transistor’, IEEE Electron Device Lett., EDL-4, 221–224 (1983).CrossRefGoogle Scholar
  21. [21]
    A. Afzali-Kushaa and A. El-Nokali, ’Modeling subthreshold capacitances of MOS transistors’, Solid-State Electron., 35, pp. 45–49 (1992).CrossRefGoogle Scholar
  22. [22]
    W. Budde and W. H. Lamfried, ’A charge-sheet capacitance model based on drain current modeling’, IEEE Trans. Electron Devices, ED-37, pp. 1678–1687 (1990).CrossRefGoogle Scholar
  23. [23]
    H. J. Park, P. K. Ko, and C. Hu, ’A charge sheet capacitance model of short channel MOSFET’s for SPICE’, IEEE Trans. Computer-Aided Design, CAD-10, pp. 376–389 (1991).CrossRefGoogle Scholar
  24. [24]
    C. T. Yao, I. A. Mack, and H. C. Lin, ’Short-channel effects on MOSFET terminal capacitances’, Tech. Digest ,IEEE Custom Integrated Circuits Conference, CICC-87, pp. 400–404 (1987).Google Scholar
  25. [25]
    B. J. Sheu and P. K. Ko, ’Measurement and modeling of short-channel MOS transistor gate capacitances’, IEEE J. Solid-State Circuits, SC-22, pp. 464–472 (1987).CrossRefGoogle Scholar
  26. [26]
    Y. T. Yeow, ’Measurement and numerical modeling of short channel MOSFET gate capacitances’, IEEE Trans. Electron Devices ED-35, pp. 2510–2519 (1987).CrossRefGoogle Scholar
  27. [27]
    Y. Ohkura, T. Toyabe, and H. Masuda, ’Analysis of MOSFET capacitances and their behavior at short-channel lengths using a AC device simulator’, IEEE Trans. Computer-Aided Design, CAD-6, 423–429 (1987).CrossRefGoogle Scholar
  28. [28]
    H. Iwai, M. R. Pinto, S. C, Rafferty, J. E. Oristian, and R. W. Dutton, ’Velocity saturation effect on short-channel MOS transistor capacitance,’ IEEE Electron Device Lett., EDL-8, pp. 120–122 (1985).CrossRefGoogle Scholar
  29. [29]
    K. W. Chai and J. J. Paulos, ’Comparison of quasi-static and non-quasi-static capacitance models for the four terminal MOSFET,’ IEEE Electron Device Lett., EDL-8, pp. 377–379 (1987).CrossRefGoogle Scholar
  30. [30]
    M. H. Bagheri and Y. Tsividis, ’A small signal dc-to-high frequency nonquasistatic model for the four-terminal MOSFET valid in all regions of operation’, IEEE Trans. Electron Devices, ED-32, pp. 2383–2391 (1985).CrossRefGoogle Scholar
  31. [31]
    P. Mancini, C. Turchetti, and G. Masetti, ’A non-quasi-static analysis of the transient behavior of the long-channel MOST valid in all regions of operation,’ IEEE Trans. Electron Devices, ED-34, pp. 325–335 (1987).CrossRefGoogle Scholar
  32. [32]
    P. J. V. Vandeloo and W. M. C. Sansen, ’Modeling of the MOS transistor for high frequency analog design’, IEEE Trans. Computer-Aided Design, CAD-8, pp. 713–723 (1989).CrossRefGoogle Scholar
  33. [33]
    L. J. Pu and Y. Tsividis, ’Small-signal parameters and thermal noise of the fourterminal MOSFET in non-quasistatic operation,’ Solid-State Electron., 33, pp. 513–521 (1990).CrossRefGoogle Scholar
  34. [34]
    H. J. Park, P. K. Ko, and C. Hu, ’A charge conserving non-quasistatic (NQS) MOSFET model for SPICE transient analysis,’ IEEE Trans. Computer-Aided Design, CAD-10, pp. 629–642 (1991).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1993

Authors and Affiliations

  • Narain Arora
    • 1
  1. 1.Digital Equipment CorporationHudsonUSA

Personalised recommendations