Advertisement

MOSFET DC Model

  • Narain Arora
Part of the Computational Microelectronics book series (COMPUTATIONAL)

Abstract

The MOSFET model required for circuit simulation consists of two parts: (a) a steady-state or DC model, where the voltages applied at the terminals of the device remain constant, that is they do not vary with time; (b) a dynamic or AC model, where the device terminal voltages do not remain constant but vary with time. In this chapter we will discuss only DC MOS transistor models for different regions of device operation. In the next chapter we will deal with the dynamic models.

Keywords

Gate Voltage Drain Voltage Strong Inversion Drain Induce Barrier Lowering Weak Inversion Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Selberherr, A. Schutz, and H. W. Potzl, ‘MINIMOS-A two-dimensional MOS transistor analyzer’, IEEE Trans. Electron. Devices, ED-27, pp. 1540–1550 (1980).CrossRefGoogle Scholar
  2. [2]
    M. R. Pinto, C. S. Rafferty, and R. W. Dutton, ‘PISCES-II: Poisson and continuity equation solver’, Stanford Electronic Lab. Tech. Rep., Sept. 1984.Google Scholar
  3. [3]
    C. L. Wilson and J. L. Blue, ‘Two-dimensional finite element charge-sheet model of a short channel MOS transistor’, Solid-State Electron., 25, pp. 461–477 (1982).CrossRefGoogle Scholar
  4. [4]
    H. C. Pao and C. T. Sah, ‘Effects of diffusion current on characteristics of metal-oxide (insulator)-semiconductor transistors’, Solid-State Electron., 9, pp. 927–937 (1966).CrossRefGoogle Scholar
  5. [5]
    R. F. Pierret and J. A. Shields, ‘Simplified long-channel MOSFET theory’, Solid-State Electron., 26, pp. 143–147 (1983).CrossRefGoogle Scholar
  6. [6]
    A. Nussbaum, R. Sinha, and D. Dokos, ‘The theory of the long-channel MOSFET’, Solid-State Electron., 27, pp. 97–107 (1984).CrossRefGoogle Scholar
  7. [7]
    J. R. Brews, ‘A charge sheet model of the MOSFET’, Solid-State Electron., 21, pp. 345–355 (1978).CrossRefGoogle Scholar
  8. [8]
    J. R. Brews, ‘Physics of MOS transistor’, in Silicon Integrated Circuits ,Part A, Ed. D. Kahng, Applied Solid-State Science Series, Academic Press, New York, 1981.Google Scholar
  9. [9]
    P. P. Guebels and F. Van de Wiele, ‘A small geometry MOSFET models for CAD applications’, Solid-State Electron., 26, pp. 267–263 (1983).CrossRefGoogle Scholar
  10. [10]
    G. Baccarani, M. Rudan, and G. Spadini, ‘Analytical i.g.f.e.t model including drift and diffusion’, IEE J. Solid-State and Electron Devices, 2, pp. 62–68 (1978).CrossRefGoogle Scholar
  11. [11]
    F. Van de Wiele, ‘A long channel MOSFET model’, Solid-State Electron., 22, pp. 991–997 (1979).CrossRefGoogle Scholar
  12. [12]
    C. Turchetti and G. Masetti, ‘A CAD-oriented analytical MOSFET model for high-accuracy applications’, IEEE Trans. Computer-Aided Design, CAD-3, pp. 117–122 (1984).CrossRefGoogle Scholar
  13. [13]
    A. M. Ostrowsky, Solutions of Equations and Systems of Equations ,Academic Press, New York, 1973.Google Scholar
  14. [14]
    Y. Tsividis, ‘Moderate inversion in MOS devices’, Solid-State Electron., 25, pp. 1099–1104 (1982), also see “Erratum”, Solid-State Electron., 26, p. 823 (1983).CrossRefGoogle Scholar
  15. [15]
    Y. P. Tsividis, Operation and Modeling of the MOS Transistor ,McGraw-Hill Book Company, New York, 1987.Google Scholar
  16. [16]
    P. P. Guebels and F. Van de Wiele, ‘A small geometry MOSFET models for CAD applications’, Solid-State Electron., 26, pp. 263–267 (1983).CrossRefGoogle Scholar
  17. [17]
    S. Yu, A. F. Franz, and T. G. Mihran, ‘A physical parametric transistor model for CMOS circuit simulation’, IEEE Trans. Computer-Aided Design, CAD-7, pp. 1038–1052 (1988).CrossRefGoogle Scholar
  18. [18]
    H. J. Park, P. K. Ko, and C. Hu, ‘A charge sheet capacitance model of short channel MOSFET’s for SPICE’, IEEE Trans. Computer-Aided Design, CAD-10, pp. 376–389 (1991).CrossRefGoogle Scholar
  19. [19]
    A. R. Boothryod, S. W. Tarasewicz, and C. Slaby, ‘MISNAN-A physically based continuous MOSFET model for CAD applications’, IEEE Trans. Computer-Aided Design, CAD-10, pp. 1512–1529 (1991).CrossRefGoogle Scholar
  20. [20]
    C. T. Sah, ‘Characteristics of the metal-oxide-semiconductor transistors’, IEEE Trans. Electron. Devices, ED-11, pp. 324–345 (1964).CrossRefGoogle Scholar
  21. [21]
    H. Schichman and D. A. Hodges, ‘Modeling and simulation of insulated-gate field-effect transistor switching circuits’, IEEE J. Solid-State Circuits, SC-3, pp. 285–289 (1968).CrossRefGoogle Scholar
  22. [22]
    H. K. J. Ihantola and J. L. Moll, ‘Design theory of a surface field-effect transistor’, Solid-State Electron., 7, pp. 423–430 (1964).CrossRefGoogle Scholar
  23. [23]
    A. Vladimirescu and S. Liu, ‘The simulation of MOS integrated circuits using SPICE2’, Memorandum No. UCB/ERL M80/7, Electronics Research Laboratory, University of California, Berkeley, October 1980.Google Scholar
  24. [24]
    H. I. Hanafi, L. H. Camnitz, and A. J. Dally, ‘An accurate and simple MOSFET model for computer-aided design’, IEEE J. Solid-State Circuits, SC-17, pp. 882–891 (1982).CrossRefGoogle Scholar
  25. [25]
    B. J. Sheu, D. L. Scharfetter, P. K. Ko, and M. C. Jeng, ‘BSIM: Berkeley short-channel IGFET model for MOS transistors’, IEEE J. Solid-State Circuits, SC-22, pp. 558–565 (1987).CrossRefGoogle Scholar
  26. [26]
    N. D. Arora and L. M. Richardson, ‘MOSFET modeling for circuit simulation’, in Advanced MOS Device Physics (N. G. Einspruch and G. Gildenblat, Eds.), VLSI Electronics: Microstructure Science, Vol. 18, pp. 236–276, Academic Press Inc., New York, 1989.Google Scholar
  27. [27]
    H. C. de Graaff and F. M. Klaassen, Compact Transistor Modelling for Circuit Design, Springer-Verlag, Wien-New York, 1990.MATHGoogle Scholar
  28. [28]
    C.-L. Huang and G. Sh. Gildenblat, ‘Measurements and modeling of the n-channel MOSFET inversion layer mobility and device characteristics in the temperature range 60#x2013;300 K’, IEEE Trans. Electron. Devices, ED-37, pp. 1289–1300 (1990).CrossRefGoogle Scholar
  29. [29]
    M. B. Barron, ‘Low level currents in insulated gate field effect transistors’, Solid-State Electron., 21, pp. 293–309 (1972).CrossRefGoogle Scholar
  30. [30]
    R. M. Swanson and J. D. Meindel, ‘Ion-implanted complementary MOS transistors in low voltage circuits’, IEEE J. Solid-State Circuits, SC-7, pp. 146–153 (1972).CrossRefGoogle Scholar
  31. [31]
    W. Fichtner and H. W. Poetzl, ‘MOS modeling by analytical approximation. I. Subthreshold current and threshold voltage’, Int. J. Electron., 46, pp. 33–55 (1979).CrossRefGoogle Scholar
  32. [32]
    J. B. Brews, ‘Subthreshold behavior of uniformly and nonuniformly doped long-channel MOSFET’, IEEE Trans. Electron Devices, ED-26, pp. 1282–1291 (1979).CrossRefGoogle Scholar
  33. [33]
    G. T. Wright, ‘Simple and continuous MOSFET models for the computer-aided design of VLSI’, IEE Proc. I, Solid-State and Electron Devices, 132, pp. 187–194 (1985).CrossRefGoogle Scholar
  34. [34]
    G. T. Wright, ‘Physical and CAD model for the implanted-channel VLSI MOSFET’, IEEE Trans. Electron Devices, ED-34, pp. 823–833 (1987).CrossRefGoogle Scholar
  35. [35]
    C. Turchetti and G. Masetti, ‘Analysis of the depletion-mode MOSFET including diffusion and drift currents’, IEEE Trans. Electron Devices, ED-32, pp. 773–782 (1985).CrossRefGoogle Scholar
  36. [36]
    G. R. Mohan Rao, ‘An accurate model for a depletion mode IGFET used as a load device’, Solid-State Electron., 21, pp. 711–714 (1978).CrossRefGoogle Scholar
  37. [37]
    G. Baccarani, F. Landini, and B. Ricco, ‘Depletion-mode MOSFET model including field dependent surface mobility’, Proc. IEE., 127, pt. I, pp. 230 (1980).Google Scholar
  38. [38]
    Y. A. El-Mansy, ‘Analysis and characterization of depletion mode MOSFET’, IEEE J. Solid-State Circuits, SC-15, pp. 331–340 (1980)CrossRefGoogle Scholar
  39. [39]
    P. Ratnam and A. B. Bhattacharyya, ‘Accumulation-punchthrough model of operation of buried-channel MOSFET’s’, IEEE Trans. Electron Device Lett., EDL-3, pp. 203–204 (1982).CrossRefGoogle Scholar
  40. [40]
    T. Yamaguchi and S. Morimoto, ‘Analytical model and characteristics of small geometry buried-channel depletion MOSFETs’, IEEE J. Solid-State Circuits, SC-18, pp. 784–793 (1983).CrossRefGoogle Scholar
  41. [41]
    S. H. Ahmed and C. A. T. Salama, ‘Depletion mode MOSFET modeling for CAD’, IEE Proc. Part I, Solid-State &Electron Dev., 130, pp. 281–286 (1983).CrossRefGoogle Scholar
  42. [42]
    D. A. Divekar and R. I. Dowell, ‘A depletion-mode MOSFET model for circuit simulation’, IEEE Trans. Computer-Aided Design, CAD-3, pp. 80–87 (1984).CrossRefGoogle Scholar
  43. [43]
    D. Ma, ‘A physical and SPICE-compatible models for the MOS depletion device’, IEEE Trans. Computer-Aided Design, CAD-4, pp. 349–356 (1985).Google Scholar
  44. [44]
    C. Y. Yu and K. C. Hsu, ‘Mobility models for the I-V characterstics of buried-channel MOSFETs’, Solid-State Electron., 28, pp. 917–923 (1985).CrossRefGoogle Scholar
  45. [45]
    M. J. Van de Tol and S. G. Chamberlain, ‘Buried-channel MOSFET model for SPICE’, IEEE Trans. Computer-Aided Design, CAD-10, pp. 1015–1035 (1991).Google Scholar
  46. [46]
    G. Merckel, J. Borel, and N. Z. Cupcea, ‘An accurate large-signal MOS transistors model for computer-aided-design’, IEEE Trans. Electron Devices, ED-19, pp. 681– 690 (1972).CrossRefGoogle Scholar
  47. [47]
    T. Ando, A. B. Fowler, and F. Stern, ‘Electronic properties of two-dimensional systems’, Reviews of Modern Phys., 54, pp. 437–672, 1982.CrossRefGoogle Scholar
  48. [48]
    D. K. Ferry, K. Hess, and P. Vogl, ‘VLSI Electronics: Microstructure Science’, Vol. 2 (N. G. Einspruch, Ed.), p. 67. Academic Press, New York, 1981.Google Scholar
  49. [49]
    F. N. Trofimenkoff, ‘Field-dependent mobility analysis of the field effect transistor’, Proc. IEEE, 53, pp. 1765–1766 (1965).CrossRefGoogle Scholar
  50. [50]
    D. Frohman-Bentchkowsky, ‘On the effect of mobility variation on MOS device characteristics’, IEEE Proc., 56, pp. 217–218 (1968).CrossRefGoogle Scholar
  51. [51]
    A. G. Sabnis and J. T. Clemens, ‘Characterization of the electron mobility in the inverted <100> Si surface’, IEEE IEDM, Tech. Dig. ,pp. 18–21 (1979).Google Scholar
  52. [52]
    S. C. Sun and J. D. Plummer, ‘Electron mobility in inversion and accumulation layers on thermally oxidized silicon surface’, IEEE Trans. Electron Devices, ED-27, pp. 1497–1508 (1980).CrossRefGoogle Scholar
  53. [53]
    P. P. Wang, ‘Device characteristics of short-channel and narrow-width MOSFETs’, IEEE Trans. Electron Devices, ED-25, pp. 779–786 (1978).CrossRefGoogle Scholar
  54. [54]
    M. H. White, F. van de Wiele, and J. P. Lambot, ‘High-accuracy MOS models for computer aided design’, IEEE Trans. Electron Devices, ED-27, pp. 899–906 (1980).CrossRefGoogle Scholar
  55. [55]
    K. Y. Fu, ‘Mobility degradation due to the gate field in the inversion layer of MOSFETs’, IEEE Trans. Electron Device Lett., EDL-3, pp. 292–293 (1982).CrossRefGoogle Scholar
  56. [56]
    M. S. Lin, ‘The classical versus the quantum mechanical model of mobility degradation due to the gate field in MOSFET inversion layers’, IEEE Trans. Electron Devices, ED-32, pp. 700–710 (1985).Google Scholar
  57. [57]
    M. S. Liang, J. Y. Choi, P. K. Ko, and C. M. Hu, ‘Inversion-layer capacitance and mobility of very thin gate-oxide MOSFETs’, IEEE Trans. Electron Devices, ED-33, pp. 409–413 (1986).CrossRefGoogle Scholar
  58. [58]
    B. Majkusiak and A. Jakubowski, ‘The dependence of MOSFET surface carrier mobility on gate oxide thickness’, IEEE Trans. Electron Devices, ED-33, pp. 1717–1721 (1986).CrossRefGoogle Scholar
  59. [59]
    N. D. Arora and G. Sh. Gildenblat, ‘A semi-empirical model of the MOSFET inversion layer mobility for low-temperature operation’, IEEE Trans. Electron Devices, ED-34, pp. 89–93 (1987).CrossRefGoogle Scholar
  60. [60]
    J. W. Watt and J. D. Plummer, ‘Universal mobility-field curves for electrons and holes in MOS inversion layers’, Proc. Symp. VLSI Tech., pp. 81–82 (1987)Google Scholar
  61. [61]
    D. T. Amm, H. Mingam, P. Delpech, and T. T. D’ouville, ‘Surface mobility in n + and p+ doped polysilicon gate PMOS transistors’, IEEE Trans. Electron Devices, ED-36, pp. 963–967 (1989).CrossRefGoogle Scholar
  62. [62]
    P. K. Ko, ‘Approaches to scaling’ in Advanced MOS Device Physics (N. G. Einspruch and G. Gildenblat, Eds.), VLSI Electronics Vol. 18, Academic Press Inc., New York, 1989.Google Scholar
  63. [63]
    S. W. Lee, ‘Universality of mobility-gate field characteristics of electrons in the inversion charge layer and its application in MOSFET modeling’, IEEE Trans. Computer-Aided Design, CAD-8, pp. 742–730 (1989).Google Scholar
  64. [64]
    A. J. Walker and P. H. Woerlee, ‘Mobility model for silicon inversion layers’, EESDERC 1987, Tech. Dig. ,pp. 667–670 (1987).Google Scholar
  65. [65]
    S. Takagi, M. Iwase, and A. Toriumi, ‘On universality of inversion-layer mobility in n-and p-channel MOSFETs’, IEDM, Tech. Dig. ,pp. 398–401 (1988).Google Scholar
  66. [66]
    G. M. Yeric and Al F. Tasch, ‘A universal MOSFET mobility degradation model for circuit simulation’, IEEE Trans. Computer-Aided Design, CAD-9, pp. 1123–1126 (1990).Google Scholar
  67. [67]
    T. J. Krutsick and M. H. White, ‘Consideration of doping profiles in MOSFET mobility modeling’, IEEE Trans. Electron Devices, ED-35, pp. 1153–1155 (1988).CrossRefGoogle Scholar
  68. [68]
    J. H. Satter, ‘The S-model: A highly accurate MOST model for CAD’, Solid State Electron., 29, pp. 990–997 (1986).CrossRefGoogle Scholar
  69. [69]
    B. J. Moon, C. K. Park, K. M. Rho, K. Lee, and M. Shur, ‘New short-channel n-MOSFET current-voltage model in strong inversion and unified parameter extraction method’, IEEE Trans. Electron Devices, ED-38, pp. 592–602 (1991).CrossRefGoogle Scholar
  70. [70]
    B. J. Moon, C. K. Park, K. M. Rho, K. Lee, M. Shur, and T. A. Fjeldly, ‘Analytical model for p-channel MOSFET’s’, IEEE Trans. Electron Devices, ED-38, pp. 2632– 2646 (1991).CrossRefGoogle Scholar
  71. [71]
    G. Sh. Gildenblat, C.-L. Huang, and N. D. Arora, ‘Split C-V measurements of low temperature MOSFET inversion layer mobility,‘ Cryogenics, 29, pp. 1163–1166, (1989).CrossRefGoogle Scholar
  72. [72]
    T. Sato, Y. Takeishi, H. Tango, H. Ohnuma, and Y. Okamoto, ‘Drift velocity saturation of charge carriers in Si inversion layers’, J. Phys. Soc. Japan, 31, pp. 1846– 1849 (1971).CrossRefGoogle Scholar
  73. [73]
    K. K. Throuber, ‘Relation of drift velocity to low field mobility and high field saturation velocity’, J. Appl. Phys., 51, pp. 2127–2136 (1980).CrossRefGoogle Scholar
  74. [74]
    R. Coen and R. S. Muller, ‘Velocity of surface carriers in inversion layers of silicon’, Solid-State Electron., 23, pp. 35–40 (1980).CrossRefGoogle Scholar
  75. [75]
    J. P. Leburton and G. E. Dorda, ‘E dependence in small-sized MOS transistors’, IEEE Trans. Electron Devices, ED-29, pp. 1168–1171 (1981).Google Scholar
  76. [76]
    S. A. Schwarz, ‘Semi-empirical equations for electron velocity in silicon: Part II-MOS inversion layer’, IEEE Trans. Electron Devices, ED-30, pp. 1634–1639 (1983).CrossRefGoogle Scholar
  77. [77]
    G. W. Taylor, ‘Velocity-saturated characteristics of short-chabbel MOSFETs’, AT&T Bell System Technical J., 63, pp. 1325–1381 (1984).Google Scholar
  78. [78]
    J. A. Cooper, Jr. and D. F. Nelson, ‘Measurement of the high-field drift velocity of electrons in inversion layers in silicon’, IEEE Electron Devices Lett., EDL-2, pp. 171–173 (1981). See also J. A. Cooper, Jr., D. F. Nelson, S. A. Schwarz, and K. K. Thornber, ‘VLSI Electronics: Microstructure Science‘ Vol. 10 (N. G. Einspruch and R. S. Bauer, Eds.), p. 323, Academic Press, New York, 1985.CrossRefGoogle Scholar
  79. [79]
    T. Y. Chan, S. W. Lee, and H. Gaw, ‘Experimental characterization and modeling of electron saturation velocity in MOSFET’s inversion layer from 90 to 350 K’, IEEE Electron Devices Lett., EDL-2, pp. 466–468 (1990).CrossRefGoogle Scholar
  80. [80]
    N. Kotani and S. Kawazu, ‘Computer analysis of punch-through in MOSFETs’, Solid-State Electron., 22, pp. 63–70 (1979).CrossRefGoogle Scholar
  81. [81]
    L. Risch, ‘Electron mobility in short-channel MOSFETs with series resistance’, IEEE Trans. Electron Devices, ED-30, pp. 959–961 (1983).CrossRefGoogle Scholar
  82. [82]
    T. Grotjohn and B. Hoefflinger, ‘A parametric short-channel MOS transistor model for subthreshold and strong inversion current’, IEEE Trans. Electron Devices, ED-31, pp. 234–246 (1984).CrossRefGoogle Scholar
  83. [83]
    S. L. Wong and C. A. T. Salama, ‘Improved simulation of p- and n-channel MOSFETs using an enhanced SPICE MOS3 model’, IEEE Trans. Computer-Aided Design, CAD-6, pp. 586–591 (1987).CrossRefGoogle Scholar
  84. [84]
    P. Yang and P. K. Chatterjee, ‘SPICE modeling for small geometry MOSFET circuits’, IEEE Trans. Computer-Aided Design, Vol. CAD-1, pp. 169–182 (1982).CrossRefGoogle Scholar
  85. [85]
    B. J. Sheu, D. L. Scharfetter, P. K. Ko, and M. C. Jeng, ‘BSIM: Berkeley short-channel IGFET model for MOS transistors’, IEEE J. Solid-State Circuits, SC-22, pp. 558–565 (1987).CrossRefGoogle Scholar
  86. [86]
    C. Duvvury, ‘Guide to short-channel effects in MOSFETs’, IEEE Circuits and Device Mag., pp. 6–10 (1986).Google Scholar
  87. [87]
    A. L. Silburt, R. C. Foss, and W. F. Petrie, ‘An efficient MOS transistor model for computer-aided design’, IEEE Trans. Computer-Aided Design, CAD-3, pp. 104–110 (1984).CrossRefGoogle Scholar
  88. [88]
    N. D. Arora and M. Sharma, ‘MOSFET substrate current model for circuit simulation’, IEEE Trans. Electron Devices, ED-38, pp. 1392–1398 (1991).CrossRefGoogle Scholar
  89. [89]
    C. G. Sodini, P. K. Ko, and J. L. Moll, ‘The effect of high fields on MOS device and circuit performance’, IEEE Trans. Electron Devices, ED-31, pp. 1386–1396 (1984).CrossRefGoogle Scholar
  90. [90]
    B. Hoefflinger, H. Sibbert, and G. Zimmer, ‘Model and performance of hot electron MOS transistor for VLSI’, IEEE J. Solid State Circuits, SC-14, pp. 435–442 (1979).CrossRefGoogle Scholar
  91. [91]
    F. M. Klaassen and W. C. J. de Groot, ‘Modeling of scaled-down MOS transistors’, Solid-State Electron., 23, pp. 237–242 (1980).CrossRefGoogle Scholar
  92. [92]
    B. Hoefflinger, ‘Output characteristics of short-channel field-effect transistors’, IEEE Trans. Electron Devices, ED-28, pp. 971–976 (1981).CrossRefGoogle Scholar
  93. [93]
    B. T. Murphy, ‘Unified field-effect transitor theory including velocity saturation’, IEEE J. Solid State Circuits, SC-15, pp. 325–328 (1980).CrossRefGoogle Scholar
  94. [94]
    V. G. K. Reddi and C. T. Sah, ‘Source to drain resistance beyond pinch-off in metal-oxide-semiconductor transistors (MOST)’, IEEE Trans. Electron Devices, ED-17, pp. 139–141 (1965).CrossRefGoogle Scholar
  95. [95]
    D. Frohman-Bentchkowsky and A. S. Grove, ‘Conductance of MOS transistors in saturation’, IEEE Trans. Electron Devices, ED-16, pp. 108–113 (1969).CrossRefGoogle Scholar
  96. [96]
    F. S. Jenkins, E. R. Lane, W. W. Lattin, and W. S. Richardson, ‘MOS-device modeling for computer implementation’, IEEE Trans. Circuit Theory, CT-20, pp. 649–658 (1973).Google Scholar
  97. [97]
    G. Baum and H. Beneking, ‘Drift velocity saturation in MOS transistors’, IEEE Trans. Electron Devices, ED-17, pp. 481–482 (1970).CrossRefGoogle Scholar
  98. [98]
    A. Popa, ‘An injection level dependent theory of the MOS transistor in saturation’, IEEE Trans. Electron Devices, ED-19, pp. 774–781 (1972).CrossRefGoogle Scholar
  99. [99]
    P. Rossel, H. Martinot, and G. Vassilieff, ‘Accurate two sections model for MOS transistor in saturation’, Solid-State Electron., 19, pp. 51–56 (1976).CrossRefGoogle Scholar
  100. [100]
    T. Poorter and J. H. Satter, ‘A DC model for an MOS-transistor in the saturation region’, Solid-State Electron., 23, pp. 765–772 (1980).CrossRefGoogle Scholar
  101. [101]
    P. Ratnam and C. A. T. Salama, ‘A new approach to the modeling of nonuniformly doped short-channel MOSFETs’, IEEE Trans. Electron Devices, ED-31, pp. 1289–1298 (1984).CrossRefGoogle Scholar
  102. [102]
    Y. A. El-Mansy and A. R. Boothroyd, ‘A simple two-dimensional model for IGFET’, IEEE Trans. Electron Devices, ED-24, pp. 254–262 (1977).CrossRefGoogle Scholar
  103. [103]
    F. J. Lai and J. Y. Sun, ‘An analytical one-dimensional model for lightly doped drain (LDD) MOSFET devices’, IEEE Trans. Electron Devices, ED-32, pp. 2803–2811 (1985).Google Scholar
  104. [104]
    M. E. Banna and M. E. Nokali, ‘A pseudo-two-dimensional analysis of short channel MOSFETs’, Solid-State Electron., 31, pp. 269–274 (1988).CrossRefGoogle Scholar
  105. [105]
    G. S. Huang and C. Y. Wu, ‘An analytic I-V model for lightly doped drain (LDD) MOSFET devices’, IEEE Trans. Electron Devices, ED-34, pp. 1311–1321 (1987).CrossRefGoogle Scholar
  106. [106]
    C. Turchetti and G. Masetti, ‘A charge-sheet analysis of short-channel enhancement-mode MOSFETV’, IEEE J. Solid-State Circuits, SC-21, pp. 267–275 (1986).CrossRefGoogle Scholar
  107. [107]
    K. Y. Toh, P. K. Ko, and R. G. Meyer, ‘An engineering model for short-channel MOS devices’, IEEE J. Solid-State Circuits, SC-23, pp. 950–958 (1988).CrossRefGoogle Scholar
  108. [108]
    K. Mayaram, J. C. Lee, and C. Hu, ‘A model for the electric field in lightly doped drain structures’, IEEE Trans. Electron Devices, ED-34, pp. 1509–1518 (1987).CrossRefGoogle Scholar
  109. [109]
    Y. Hu, R. V. H. Booth, and M. H. White, ‘An analytical model for the lateral channel electric field in LDD structures’, IEEE Trans. Electron Devices, ED-37, pp. 2254– 2263 (1990).CrossRefGoogle Scholar
  110. [110]
    G. W. Taylor, ‘Subthreshold conduction in MOSFETs’, IEEE Trans. Electron Devices, ED-25, pp. 337–350 (1978).CrossRefGoogle Scholar
  111. [111]
    P. Antognetti, D. D. Caviglia, and E. Profumo, ‘CAD model for threshold and subthreshold conduction in MOSFETs’, IEEE J. Solid-State Circuits, SC-17, pp. 454– 458 (1982).CrossRefGoogle Scholar
  112. [112]
    P. C. Chan, R. Liu, S. K. Lau, and M. Pinto-Guedes, ‘A subthreshold conduction model for circuit simulation of submicron MOSFET’, IEEE Trans. Computer-Aided Design, CAD-6, pp. 574–581 (1987).CrossRefGoogle Scholar
  113. [113]
    S. S. Chung and C. T. Sah, ‘A subthreshold model of the narrow-gate effects in MOSFETV, IEEE Trans’. Electron Devices, ED-34, pp. 2521–2528 (1987).CrossRefGoogle Scholar
  114. [114]
    A. L. Silburt, A. R. Boothroyd, and M. Digiovanni, ‘Automated parameter extraction and modeling of the MOSFET below threshold’, IEEE Trans. Computer-Aided Design, CAD-7, pp. 484–488 (1988).Google Scholar
  115. [115]
    S. S. Chung, ‘A complete model of the I-V characteristics for narrow-gate MOSFETs’, IEEE Trans. Electron Devices, ED-37, pp. 1020–1030 (1990).CrossRefGoogle Scholar
  116. [116]
    F. M. Klaassen and R. M. D Velghe, Proceedings ESSDERC 89, pp. 418–422, Springer-Verlag, Vienna (1989).Google Scholar
  117. [117]
    H. Masuda, J. I. Mano, R. Ikematsu, H. Sugihara, and Y. Aoki, ‘A submicrometer MOS transistor I-V model for circuit simulation’, IEEE Trans. Computer-Aided Design, CAD-10, pp. 161–170 (1991).CrossRefGoogle Scholar
  118. [118]
    J. A. Power and W. A. Lane, ‘Enhanced SPICE MOSFET model for analog applications including parameter extraction schemes’, Proc. IEEE 1990 Int. Conf. Microelectronics Test Structures, 3, pp. 129–134 (1990).Google Scholar
  119. [119]
    N. D. Arora, ‘A continuous MOSFET model for VLSI simulation’ (to be published).Google Scholar
  120. [120]
    M. G. Hsu and B. J. Sheu, ‘Inverse-geometry dependence of MOS transistor electrical parameters’, IEEE Trans. Computer-Aided Design, CAD-6, pp. 582–585 (1987).CrossRefGoogle Scholar
  121. [121]
    F. M. Klaassen, P. T. J. Biermans, and R. M. D. Velghe, ‘The series resistance of submicron MOSFETs and its effect on their characteristics’, Proc. ESSDERC 1988, J. De Physique, pp. 257–260 (1988).Google Scholar
  122. [122]
    F. H. Gaensslen, V. L. Rideout, E. J. Walker, and J. J. Walker, ‘Very small MOSFETs for low temperature operation’, IEEE Trans. Electron Devices, ED-24, pp. 218–219 (1977).CrossRefGoogle Scholar
  123. [123]
    S. K. Tewksbury, ‘N-channel enhancement-mode MOSFET characteristics from 10#x2013;300 K’, IEEE Trans. Electron Devices, ED-28, pp. 1519–1529 (1981).CrossRefGoogle Scholar
  124. [124]
    G. Gildenblat, ‘Low-temperature operation’ in Advanced MOS Device Physics (N. G. Einspruch and G. Gildenblat, Eds.), VLSI Electronics Vol. 18, pp. 191–232, Academic Press Inc., New York, 1989.Google Scholar
  125. [125]
    F. Shoucair, W. Hwang, and P. Jain, ‘Electrical characteristics of large scale integration (LSI) MOSFETs at very high temperatures’, Microelect. Reliab., 24, part I, pp. 465– 485 and part II, pp. 487#x2013;510 (1984).CrossRefGoogle Scholar
  126. [126]
    C. P. Wan and B. J. Sheu, ‘Temperature dependence modeling for MOS VLSI circuit simulation’, IEEE Trans. Computer-Aided Design, CAD-8, pp. 1065–1073 (1989).CrossRefGoogle Scholar
  127. [127]
    M. Nishida and H. Ohyabu, Temperature dependence of MOSFET characteristics in weak inversion’, IEEE Trans. Electron Devices, ED-24, pp. 1245–1248 (1977).CrossRefGoogle Scholar
  128. [128]
    H. C. Card and R. W. Ulmer, ‘On the temperature dependence of subthreshold currents in MOS electron inversion layers’, Solid-State Electron., 22, pp. 463–465 (1979).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1993

Authors and Affiliations

  • Narain Arora
    • 1
  1. 1.Digital Equipment CorporationHudsonUSA

Personalised recommendations