Advertisement

MOS Capacitor

  • Narain Arora
Part of the Computational Microelectronics book series (COMPUTATIONAL)

Abstract

The metal-oxide-semiconductor (MOS) structure is the heart of MOS technology. When this structure, commonly referred as MOS capacitor, is connected as a two terminal device, with one electrode connected to the metal and the other electrode connected to the semiconductor, a voltage dependent capacitance results. The MOS capacitor is a very useful device both for evaluating the MOS IC fabrication process and for predicting the MOS transistor characteristics. For this reason MOS capacitors are often included on the chip test sites. Note that the term MOS is still used even if the top electrode is not a metal and the insulator is not an oxide. Sometimes the acronym MIS (Metal-Insulator-Semiconductor) is also used for the MOS structure.

Keywords

Gate Voltage Minority Carrier Inversion Layer Flat Band Interface Trap 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology ,John Wiley &Sons, New York, 1982.Google Scholar
  2. [2]
    G. B. Barbottin and A. Vapaille, Eds., Instabilities in Silicon Devices ,Vols I and II, North-Holland, New York, 1989.Google Scholar
  3. [3]
    D. K. Schroder, Semiconductor Material and Device Characterization ,John Wiley &Sons, New York, 1990.Google Scholar
  4. [4]
    S. M. Sze, Semiconductor Physics and Technology ,John Wiley &Sons, New York, 1982.Google Scholar
  5. [5]
    T. P Chow and A. J. Steckl, ‘Refractory metal silicides: Thin film properties and processing technology’, IEEE Trans. Electron Devices, ED-30, pp. 1480–1497 (1983).CrossRefGoogle Scholar
  6. [6]
    Y. P. Tsividis, Operation and Modeling of the MOS Transistor ,McGraw-Hill Book Company, New York, 1987.Google Scholar
  7. [7]
    N. Lifshitz, ‘Dependence of the work function difference between the polysilicon gate and silicon substrate on the doping level in polysilicon’, IEEE Trans. Electron Devices, ED-32, pp. 617–621 (1985).CrossRefGoogle Scholar
  8. [8]
    T. Kamins, Polycrystalline Silicon for IC Application ,Kluwer Academic Publisher, Boston, 1988.CrossRefGoogle Scholar
  9. [9]
    W. M. Werner, ‘The work function difference of MOS system with aluminum field plates and polycrystalline silicon field plates’, Solid-State Electron., 17, pp. 769–775 (1974).CrossRefGoogle Scholar
  10. [10]
    O. H. Kim and C. K. Kim, ‘Threshold voltage shift due to change of impurity type of polysilicon in heavily doped polysilicon gate MOSFET’, Proc. Intern. Symposium on VLSI Technology, System and Applications, pp. 170–173, March (1983).Google Scholar
  11. [11]
    B. E. Deal, ‘Standardized terminology for oxide charge associated with thermally oxidized silicon,’ IEEE Trans. Electron Devices, ED-27, pp. 606–608 (1980).CrossRefGoogle Scholar
  12. [12]
    P. Richman, MOS Field-Effect Transistors and Integrated Circuits ,John Wiley &Sons, New York, 1973.Google Scholar
  13. [13]
    R. F. Pierret, Field Effect Devices, Vol VI: Modular Series on Solid-State Devices, Addison-Wesley Publishing Co., Reading MA, 1983.Google Scholar
  14. [14]
    R. S. Muller and T. I. Kamins, Device Electronics for Integrated Circuits ,John Wiley &Sons, New York, 1986.Google Scholar
  15. [15]
    F. Stern and W. E. Howard, ‘Properties of semiconductor surface inversion layers in quantum limits’, Phys. Rev. 163, pp. 816–835 (1967).CrossRefGoogle Scholar
  16. [16]
    A. P. Gnadinger and H. E. Talley, ‘Quantum mechanical calculation of the carrier distribution and thickness of the inversion layer of a MOS field-effect transistor’, Solid-State Electron., 13, pp. 1301–1309 (1970).CrossRefGoogle Scholar
  17. [17]
    K. H. Zaininger and F. Heiman, ‘The C-V technique as an analytical tool’, Solid-State Techn., Part I, pp. 49–56, May (1970); Part II, pp. 46–55, June (1970).Google Scholar
  18. [18]
    A. Berman and D. R. Kerr, ‘Inversion charge distribution model of the high frequency MOS capacitance’, Solid-State Electron., 17, pp. 735–742 (1974).CrossRefGoogle Scholar
  19. [19]
    T. W. Hickmott and R. D. Issac, ‘Barrier heights at the polycrystalline Silicon-SiO2 interface’, J. Appl. Phys., 52, pp. 3464–3475 (1981).CrossRefGoogle Scholar
  20. [20]
    G. Yaron and D. Frohman-Bentchkowsky, ‘Capacitance voltage characterization of poly Si-SiO2-Si structures’, Solid-State Electron., 23, pp. 433–439 (1980).CrossRefGoogle Scholar
  21. [21]
    C. Y. Wong, J. Y.-C. Sun, Y. T. Aur, C. S. Oh, R. Angelucci, and B. Davari, ‘Doping of N+ and P+ poly-Si in a dual-gate CMOS process’, IEEE IEDM, Tech. Dig. ,pp. 238–241 (1988).Google Scholar
  22. [22]
    R. A. Chapman, C. C. Wei, D. A. Bell, S. Aur, G. A. Brown, and R. A. Haken, ‘0.5 micron CMOS for high performance at 3.3 V, IEEE IEDM’, Tech. Dig. ,pp. 52–55 (1988).Google Scholar
  23. [23]
    C. Y. Lu, J. M. Sung, H. C. Kirsch, S. J. Hollenius, T. E. Smith, and L. Manchanda, ‘Anomalous C-V characteristics of implanted poly MOS structure in n+/p+ dual gate CMOS technology’, IEEE Electron Devices Lett., EDL-10, pp. 192–194 (1989).CrossRefGoogle Scholar
  24. [24]
    P. Habas and S. Selberherr, ‘On the effect of nodegenerate doping of polysilicon gate in thin oxide MOS devices-analytical modeling’, Solid-State Electron., 33, pp. 1539–1544 (1990).CrossRefGoogle Scholar
  25. [25]
    C. L. Huang and G. Sh. Gildenblat, ‘MOS flat-band capacitance method at low temperatures’, IEEE Trans. Electron Devices, ED-36, pp. 1434–1439 (1989).CrossRefGoogle Scholar
  26. [26]
    R. C. Jaeger, F. H. Gaensslen, ‘Simulation of impurity freezeout through numerical solution of Poisson’s equation with application to MOS devices,‘ IEEE Trans. Electron Devices, ED-27, pp. 914–920 (1980).CrossRefGoogle Scholar
  27. [27]
    R. R. Troutman, ‘Ion-implanted threshold voltage tailoring for insulated gate field effect transistors’, IEEE Trans. Electron Devices, ED-24, pp. 182–192 (1977).CrossRefGoogle Scholar
  28. [28]
    A. H. Marshak and R. Shrivastava, ‘On threshold and flat-band voltages for MOS devices with polysilicon gate and nonuniformly doped substrate’, Solid-State Electron., 26, pp. 361–364 (1983).CrossRefGoogle Scholar
  29. [29]
    F. Van de Weile, ‘On the flat-band voltage of MOS structures on nonuniformly doped substrate’, Solid-State Electron., 27, pp. 824–826 (1984).CrossRefGoogle Scholar
  30. [30]
    D. A. Antoniadis, ‘Calculation of threshold voltage in nonuniformly doped MOSFETs’, IEEE Trans. Electron Devices, ED-31, pp. 303–307 (1984).CrossRefGoogle Scholar
  31. [31]
    R. C. Jaeger, F. H. Gaensslen, and S. E. Diehl, ‘An efficient algorithm for simulation of MOS capacitance’, IEEE Trans. Computer-Aided Design, CAD-2, pp. 111–116 (1983).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1993

Authors and Affiliations

  • Narain Arora
    • 1
  1. 1.Digital Equipment CorporationHudsonUSA

Personalised recommendations