Advertisement

Review of Basic Semiconductor and pn Junction Theory

  • Narain Arora
Part of the Computational Microelectronics book series (COMPUTATIONAL)

Abstract

This chapter reviews some of the basics of semiconductor theory that are necessary for an understanding of the development of the device models which follows. Also reviewed is pn junction theory as its behavior is basic to the operation of transistors. The review is brief and covers only those topics which have direct relevance to MOS VLSI circuits. For more exhaustive treatments, the reader is referred to textbooks on the subject [1]–[12].

Keywords

Reverse Bias Minority Carrier Depletion Region Forward Bias Depletion Width 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. A. Smith, Semiconductors ,2nd Ed., Cambridge University Press, London, 1978.Google Scholar
  2. [2]
    A. S. Grove, Physics and Technology of Semiconductor Devices ,John Wiley &Sons, New York, 1965.Google Scholar
  3. [3]
    B. G. Streetman, Solid State Electronic Devices ,2nd ed., Prentice Hall, Englewood Cliffs, NJ, 1981.Google Scholar
  4. [4]
    R. M. Warner Jr. and B. L. Grung, Transistors-Fundamentals for the Integrated-Circuit Engineer ,John Wiley &Sons, New York, 1983.Google Scholar
  5. [5]
    S. M. Sze, Physics and Technology of Semiconductor Devices ,John Wiley &Sons, New York, 1985.Google Scholar
  6. [6]
    R. S. Muller and T. I. Kamins, Device Electronics for Integrated Circuits ,John Wiley &Sons, New York, 1986.Google Scholar
  7. [7]
    R. F. Pierret, Advanced Semiconductor Fundamentals ,Vol. VI, Modular Series on Solid-State Devices, Addison-Wesley Publishing Co., Reading MA, 1987.Google Scholar
  8. [8]
    S. Wang, Fundamentals of Semiconductor Theory and Devices ,Prentice Hall, N.J., 1989.Google Scholar
  9. [9]
    M. Zambuto, Semiconductor Devices ,McGraw-Hill Book Company, New York, 1989.Google Scholar
  10. [10]
    M. Shur, Physics of Semiconductor Devices ,Prentice Hall, Englewood Cliffs, N.J., 1990.Google Scholar
  11. [11]
    G. W. Neudeck, The PN Junction Diode ,Vol. II, 2nd Ed., Modular Series on Solid-State Devices, Addison-Wesley Publishing Co., Reading MA, 1987.Google Scholar
  12. [12]
    D. J. Roulston, Bipolar Semiconductor Devices ,McGraw-Hill Publishing Company, New York, 1990.Google Scholar
  13. [13]
    M. Aoki, K. Yano, T. Masuhara, S. Ikeda, and S. Meguro, ‘Optimum crystallographic orientation of submicron CMOS devices’, 1985 IEDM Technical Digest, pp. 577–579.Google Scholar
  14. [14]
    T. Kamins, Polycrystalline Silicon for IC Application ,Kluwer Academic Publisher, Boston, 1988.CrossRefGoogle Scholar
  15. [15]
    M. A. Green, ‘Intrinsic concentration, effective density of states, and effective mass in silicon’, J. Appl. Phys., 67, pp. 2944–2954 (1990).CrossRefGoogle Scholar
  16. [16]
    F. H. Gaensslen and R. C. Jaeger, ‘Temperature dependent threshold voltage behavior of depletion-model MOSFETS-characterization and simulation’, Solid-State Electron., 22, pp. 423–430(1979).CrossRefGoogle Scholar
  17. [17]
    S. Selberherr, ‘MOS device modeling at 77K’, IEEE Trans. Electron. Devices, ED-36, pp. 1464–1474 (1989).CrossRefGoogle Scholar
  18. [18]
    Y. P. Varshni, ‘Temperature dependence of the energy gap in semiconductors’, Physica (Amsterdam), 34, p. 149 (1967).CrossRefGoogle Scholar
  19. [19]
    H. D. Barber, ‘Effective mass and intrinsic concentration in silicon’, Solid-State Electronic, Vol. 10, pp. 1039–1051 (1967).CrossRefGoogle Scholar
  20. [20]
    S. Selberherr, Analysis and Simulation of Semiconductor Devices ,Springer-Verlag, Wien, New-York, 1984.CrossRefGoogle Scholar
  21. [21]
    M. Chrzanowska-Jeske and R. C. Jaeger, ‘BILOW-simulation of low temperature bipolar device behavior’, IEEE Trans. Electron. Devices, ED-36, pp. 1475–1488 (1989).CrossRefGoogle Scholar
  22. [22]
    W. Shockley and W. T. Read, ‘Statistics of the recombination of holes and electrons’, Phys. Rev., Vol. 87, p. 835 (1952)MATHCrossRefGoogle Scholar
  23. [23]
    R. N. Hall, ‘Electron-hole recombination in germanium’, Phys. Rev., Vol. 87, pp. 387–392 (1952)CrossRefGoogle Scholar
  24. [24]
    C. Jacoboni, C. Canalo, G. Ottaviani, and A. Quaranta, ‘A review of some charge transport properties of silicon’, Solid State Electron., 20, pp. 77–89 (1977).CrossRefGoogle Scholar
  25. [25]
    N. D. Arora, J. R. Hauser, D. J. Roulston, ‘Electron and hole mobilities in silicon as a function of concentration and temperature’, IEEE Trans. Electron. Devices, ED-29, pp. 292–295 (1982).CrossRefGoogle Scholar
  26. [26]
    W. R. Thurber and J. R. Lowney, ‘Electrical transport properties of silicon’, in VLSI Handbook ,Ed. N. G. Einspruch, Academic Press, New York, 1985.Google Scholar
  27. [27]
    B. R. Chwala and H. K. Gummel, ‘Transition region capacitance of diffused pn junctions’, IEEE Trans. Electron. Devices, ED-18, pp. 178–195 (1971).CrossRefGoogle Scholar
  28. [28]
    H. G. Poon and H. K. Gummel, ‘Modeling of emitter capacitance’, Proc. IEEE (Lett.), 57, pp. 2181–2182 (1969)Google Scholar
  29. [29]
    B. A. Freese and G. L. Buller, ‘A method of extracting SPICE2 Junction capacitance parameters from measured data’, IEEE Electron Devices Lett., EDL-5, pp. 261–263, (1984).CrossRefGoogle Scholar
  30. [30]
    L. O. Chua and P. M. Lin, Computer-Aided Analysis of Electronic Circuits: Algorithms &Computational Techniques ,Prentice Hall, Englewood Cliffs, NJ, 1975.MATHGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1993

Authors and Affiliations

  • Narain Arora
    • 1
  1. 1.Digital Equipment CorporationHudsonUSA

Personalised recommendations