Model Parameter Extraction Using Optimization Method

  • Narain Arora
Part of the Computational Microelectronics book series (COMPUTATIONAL)


In the previous chapter we had discussed the experimental setup needed for acquiring the different types of data required for MOSFET model parameter measurements and/or extraction. We had also discussed linear regression methods to determine basic MOSFET parameters. In this chapter we will be concerned with the nonlinear optimization techniques for extracting the device model parameters for various DC and AC models. These techniques are general purpose model parameter extraction methods that can be used for any nonlinear physical model. There are many books devoted to the area of optimization. Our intent here is only to provide an introduction to the optimization technique as applied to the device model parameter extraction. Various optimization programs (also called optimizers), which have been reported in the literature for device model parameter extraction, differ mainly in the optimization algorithms used.


Feasible Region Confidence Region Linear Regression Method Parameter Extraction Subthreshold Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. T. Wright and H. M. A. Gaffur, ’Preprocessor modeling of parameter and geometry dependence of short and narrow MOSFET for VLSI circuit simulation, optimization, and statistics with SPICE’, IEEE Trans. Electron Devices, ED-32, pp. 1240–1245 (1985).CrossRefGoogle Scholar
  2. [2]
    M. F. Hamer, ’First-order parameter extraction on enhancement silicon MOS transistors’, IEE Proa, 133, Pt. I, pp. 49–54 (1986).CrossRefGoogle Scholar
  3. [3]
    A. B. Bhattacharya, P. Ratnam, D. Nagchoudhuri, and S. C. Rustagi, ’On-line extraction of model parameters of a long buried-channel MOSFET’, IEEE Trans. Electron Devices, ED-32, pp. 545–550 (1983).Google Scholar
  4. [4]
    D. E. Ward and K. Doganis, ’Optimized extraction of MOS model parameters’, IEEE Trans. Computer-Aided Design, CAD-1, pp. 163–168 (1982).CrossRefGoogle Scholar
  5. [5]
    K. Doganis and D. L. Scharfetter, ’General optimization and extraction of IC device model parameters’, IEEE Trans. Electron Devices, ED-30, pp. 1219–1228 (1983).Google Scholar
  6. [6]
    P. Yang and P. K. Chatterjee, ’An optimal parameter extraction program for MOSFET models’, IEEE Trans. Electron Devices, ED-30, pp. 1214–1219 (1983).CrossRefGoogle Scholar
  7. [7]
    E. Khalily, P. H. Decher, and D. A. Teegarden, ’TECAP2: An interactive device characterization and model development system’, Tech. Digest ,IEEE Int. Conf. on Computer-Aided Design, ICCAD-84, pp. 184–151 (1984).Google Scholar
  8. [8]
    S. J. Wang, J. Y. Lee, and C. Y. Chang, ’An efficient and reliable approach for semiconductor device parameter extraction’, IEEE Trans. Computer-Aided Design, CAD-6, pp. 170–178 (1986).CrossRefGoogle Scholar
  9. [9]
    W. Maes, K. M. De Meyer, and L. H. Dupas, ’SIMPAR: A versatile technology independent parameter extraction program using new optimized fit stragegy’, IEEE Trans. Computer-Aided Design, CAD-5, pp. 320–325 (1986).CrossRefGoogle Scholar
  10. [10]
    M. Sugimoto, ’General-purpose model parameter extraction program with initial value exploration technique’, Tech. Digest ,IEEE Custom Integrated Circuits Conference, CICC-86, pp. 624–627 (1986).Google Scholar
  11. [11]
    B. Ankele, W. Holzl, and P. O’Levy, ‘Enhanced MOS parameter extraction and SPICE modeling’, Proc. IEEE Int. Conf. on Microelectronic Test Structures, Vol. 2, No. 1, pp. 73–78, March 1989.Google Scholar
  12. [12]
    M. Sharma and N. D. Arora, ’OPTIMA: A Nonlinear Model Parameter Extraction Program with Statistical Confidence Region Algorithms’, IEEE Trans. Computer-Aided Design, CAD-12, May 1993.Google Scholar
  13. [13]
    P. Conway, C. Cahill, W. A. Lane, and S. U. Lindholm, ’Extraction of MOSFET parameters using the Simplex direct search optimization method’, IEEE Trans. Computer-Aided Design, CAD-4, pp. 694–698 (1985).CrossRefGoogle Scholar
  14. [14]
    P. E. Gill, W. Murray, and M. H. Wright, Practical optimization ,Academic Press, New York, 1981.MATHGoogle Scholar
  15. [15]
    J. E. Dennis Jr. and R. B. Schnabel, Numerical Methods for Optimization and Nonlinear Equations ,Prentice-Hall, New York, 1983.MATHGoogle Scholar
  16. [16]
    D. G. Luenberger, Linear and Nonlinear Programming ,2nd Ed., Addison-Wesley, Reading, Mass., 1984.MATHGoogle Scholar
  17. [17]
    R. Fletcher, Practical Methods of Optimization ,2nd Ed., John Wiley &Sons, New York, 1987MATHGoogle Scholar
  18. [18]
    A. L. Peressini, F. E. Sullivan, and J.J. Uhl jr.. The Mathematics of Nonlinear Programming ,Springer-Verlag, New York, 1988.MATHCrossRefGoogle Scholar
  19. [19]
    F. A. Lootsma (Ed.), Numerical Methods for Nonlinear Optimization ,Academic Press, London, 1972.Google Scholar
  20. [20]
    L. C. W. Dixon and G. P. Szego (Eds.), Towards Global Optimization ,North-Holland, Amsterdam, 1979.Google Scholar
  21. [21]
    J. L. Kuester and J. H. Mize, Optimization Techniques with Fortran ,McGraw-Hill, New York, 1973.MATHGoogle Scholar
  22. [22]
    W. H. Press, B. P. Flannery, S. A. Teukolky, and W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing ,Cambridge University Press, Cambridge, London 1986. Also by the same authors: Numerical Recipes in C ,Cambridge University Press, 1988.Google Scholar
  23. [23]
    Subroutines from Harwell Library, Computer Science and System Division, ARE Harwell, Oxfordshire, OX11 ORA, England.Google Scholar
  24. [24]
    J. J. More, B. S. Garbow, and K. E. Hillstrom, User Guide for MINPACK-I; ,Applied Mathematics Division, Argonne National Laboratory, ANL-80–74, Illinois, USA.Google Scholar
  25. [25]
    Subroutines from International Mathematical Statistical Library, IMSL, 7500 Bellaire Blvd., Houston, Texas, USA.Google Scholar
  26. [26]
    D. W. Marquardt, An algorithm for least-square estimates of non-linear parameters’, SIAM Journal, 11, pp. 431–441 (1963).MathSciNetMATHGoogle Scholar
  27. [27]
    A. Fletcher, A modified Marquardt subroutine for nonlinear least squares’, Harwell Report, AERE R.6799, May 1971.Google Scholar
  28. [28]
    J. More, The Levenberg-Marquardt Algorithm: Implementation and Theory’, Numerical Analysis: Seventh Biannual Conference at the University of Dundee, Scotland ,Springer-Verlag, New York, 1977.Google Scholar
  29. [29]
    R. K. Brayton and R. Spence, Sensitivity and Optimization ,Elsevier, Amsterdam, 1980.Google Scholar
  30. [30]
    A. Vladimirescu and S. Liu, The simulation of MOS integrated circuits using SPICE2’, UCB/ERL Memo M80/7, Univ. of California, Berkeley, 1980.Google Scholar
  31. [31]
    P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences ,McGraw Hill Book Co., New York, 1967.Google Scholar
  32. [32]
    Y. Bard, Nonlinear Parameter Estimation ,Academic Press Inc., New York, 1974.MATHGoogle Scholar
  33. [33]
    J. V. Beck and K. J. Arnold, Parameter Estimation in Engineering and Science ,John Wiley &Sons, New York, 1977.MATHGoogle Scholar
  34. [34]
    C. F. Machala, P. C. Pattnaik, and P. Yang, An efficient algorithm for the extraction of parameters with high confidence from nonlinear models’, IEEE Electron Device Lett., EDL-7, pp. 214–218 (1986).CrossRefGoogle Scholar
  35. [35]
    M. Sharma and N. D. Arora, A statistical confidence region algorithm for model parameter extraction’, Proc NASECODE VII Conf ,pp. 41–42, Front Range Press, Boulder, CO, 1991.Google Scholar
  36. [36]
    W. N. Grant, Electron and hole ionization rates in epitaxial silicon at high electric fields’, Solid-State Electron., Vol. 16, pp. 1189–1203 (1973).MathSciNetCrossRefGoogle Scholar
  37. [37]
    Y. Okuto and C. R. Crowell, Threshold energy effect on avalanche breakdown voltage in semiconductor junctions’, Solid-State Electron., Vol. 18, pp. 161–168 (1975).CrossRefGoogle Scholar
  38. [38]
    N. D. Arora and M. Sharma, MOSFET substrate current model for circuit simulation’, IEEE Trans. Electron Devices, Vol. ED-38, pp. 1392–1398 (1991).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1993

Authors and Affiliations

  • Narain Arora
    • 1
  1. 1.Digital Equipment CorporationHudsonUSA

Personalised recommendations