## Abstract

Even though the operation of the modern **M**etal-**O**xide-Semiconductor (MOS) transistor was first described by Lilienfield in 1930 [1], it was not until 1960 that the first MOS transistor using silicon as the semiconductor material was reported by Kang and Atalla [2]. The MOS technology became viable only after methods of routinely growing reliable oxides were developed and reported by Snow, Grove, Deal and Sah in 1964 [3]. Since that time the MOS industry has expanded very quickly. Today MOS integrated circuits (ICs) have emerged as the dominant technology in the semiconductor industry. The exponential growth in the number of components per chip and projections for the future are shown in Figure 1.1 [4]. Also shown is the minimum feature size that can be produced on a chip. The dotted lines are projections for the future. Clearly with this technology it is now possible to have more than a million transistors on a single chip. All this has been possible due to the fact that the basic MOS transistor size has shrunk by a factor of about 20 during the last two decades, from a feature size of 20 *µ*m to less than a micron. Much of this shrinkage can be attributed to advances in lithography, the use of ion implantation, and low temperature annealing [4].

## Keywords

Equivalent Circuit Model VLSI Circuit Device Behavior VLSI Chip MOSFET Model## Preview

Unable to display preview. Download preview PDF.

## References

- [1]J. E. Lilienfield, US Patent 17, 45175 issued Jan. 28, 1930.Google Scholar
- [2]D. Kahng and M. M. Atalla, Silicon-silicon dioxide field induced surface devices, IRE Solid State Device Research Conference, Pittsburgh, PA 1960.Google Scholar
- [2a]D. Kahng, A historical perspective on the development of MOS transistors and related devices, IEEE Trans. Electron Devices, ED-23, pp. 655–660 (1976); J. D. Meindl, Ultralarge scale integration, ibid, ED-31, pp. 1555–1561 (1984).CrossRefGoogle Scholar
- [2b]J. D. Meindl, Ultralarge scale integration, Ibid, ED-31, pp. 1555–1561 (1984).Google Scholar
- [3]E. H. Snow, A. S. Grove, B. E. Deal, and C. T. Sah, Ion transport phenomena in insulating films, J. Appl. Phys., 36, pp. 1665–1673 (1965).CrossRefGoogle Scholar
- [4]S. M. Sze, Ed.,
*VLSI Technology*,2nd Ed. McGraw-Hill Book Company, New York, 1988.Google Scholar - [5]F. Faggin and T. Klein, Silicon gate technology, Solid-State Electron., 13, pp. 1125–1144(1970).CrossRefGoogle Scholar
- [6]J. A. Appels, E. Kooi, M. M. Paffen, J. J. H. Schiorje, and W. H. C. G. Verkuylen, Local oxidation of Silicon and its application in semiconductor technology, Philips Res. Rep., 25, pp. 118–132 (1970).Google Scholar
- [7]R. H. Dennard, F. H. Gaensslen, H. N. Yu, V. L. Rideout, E. Bassous, and A. R. LeBlanc, Design of ion-implanted MOSFETs with very small physical dimensions, IEEE J. Solid-State Circuits. SC-9, pp. 256–268 (1974).CrossRefGoogle Scholar
- [8]N. G. Einspruch and G. Gildenblat, Eds.,
*Advanced MOS Device Physics*,VLSI Electronics: Microstructure Science, Vol. 18, Academic Press Inc., New York, 1989.Google Scholar - [9]J. Y. Chen, CMOS-The emerging VLSI Technology, IEEE Circuits and Device Magazine, 2, pp. 16–331 (1986).Google Scholar
- [10]P. Ashburn,
*Design and Realization of Bipolar Transistors*,John Wiley &Sons, New York, 1988.Google Scholar - [11]A. R. Alvarez, Ed.,
*BICMOS Technology and Application*,Kluwer Academic Publisher, Boston, 1989.Google Scholar - [12]S. K. Gandhi,
*VLSI Fabrication Principles*,John Wiley &Sons, New York, 1983.Google Scholar - [13]A. Blicher,
*Field-Effect and Bipolar Power Transistor Physics*,Academic Press, Inc., New York 1981.Google Scholar - [14]D. A. Grant and J. Gowar,
*Power MOSFETS*-*Theory and Application*,John Wiley &Sons, New York, 1989.Google Scholar - [15]P. Antognetti, D. O. Pederson, and H. De Man, Eds.,
*“Computer Design Aids for VLSI Circuits”*,NATO Advanced Institute 1980, Sigthoff &Noordhoff, Alphen aan den Rijn, The Netherlands, 1981.Google Scholar - [16]A. E. Ruehli, Ed.,
*Circuit Analysis, Simulation and Design*,North-Holland, New York, 1986.MATHGoogle Scholar - [17]A. F. Schwarz,
*Computer-Aided Design of Microelectronic Circuits and Systems*,Vols. I and II, Academic Press, New York, 1987.Google Scholar - [18]W. T. Weeks, A. J. Jimenez, G. W. Mahoney, D. Mehta, H. Qassemzadeh, and T. R. Scott, Algorithms for ASTAP-A network-analysis program, IEEE Trans, on Circuit Theory, CT-20, pp. 628–634 (1973). Also see, Program Reference Manual, Pub. no. SH20-1118-0, IBM Corp., Data Process Division, White Plains, NY 10604.Google Scholar
- [19]L. W. Nagel, SPICE2: A computer program to simulate semiconductor circuits, Memorandum No. UCB/ERL-M520, Electronic Res. Lab., University of California, Berkeley, May 1975.Google Scholar
- [20]R. Beresford and J. Domitrowich, Survey of circuit simulators, VLSI Design, Vol. 8, pp. 70–80, July 1987.Google Scholar
- [21]J. K. White and A. Sangiovanni-Vincentelli,
*Relaxation Techniques for the Simulation of VLSI Circuits*,Kluwer Academic Publisher, Boston, 1987.Google Scholar - [22]D. A. Calhan,
*Computer-Aided Network Design*,revised Ed., McGraw-Hill Book Company, New York, 1972.Google Scholar - [23]L. O. Chua and P. M. Lin,
*Computer-Aided Analysis of Electronic Circuits: Algorithms &Computational Techniques*,Prentice Hall, Englewood Cliffs, NJ, 1975.MATHGoogle Scholar - [24]W. J. McCalla,
*Fundamentals of CAD Simulation*,Kluwer Academic Publisher, Boston, 1988.Google Scholar - [25]S. Selberherr,
*Analysis and Simulation of Semiconductor Devices*,Springer-Verlag, Wien, New-York, 1984.CrossRefGoogle Scholar - [26]C. M. Snowden,
*Semiconductor Device Modeling*,Peter Peregrinus Ltd., London, 1988.Google Scholar - [27]K. M. Cham, S. Y. Oh, D. Chin, J. L. Moll, K. Lee, and P. V. Voorde,
*Computer-Aided Design and VLSI Device Development*,2nd Ed., Kluwer Academic Publisher, Boston, 1988.CrossRefGoogle Scholar - [28]S. Selberherr, A. Schutz, and H. W. Potzel, MINIMOS-a two-dimensional MOS transistor analyzer, IEEE, ED-27, pp. 1540–1550 (1980); See also MINIMOS 3: A MOSFET simulator that includes energy balance, ibid, ED-34, pp. 1074–1078 (1987).Google Scholar
- [29]M. R. Pinto, C. S. Rafferty, and R. W. Dutton, PISCES-II: Poisson and continuity equation solver, Stanford Electronic Lab. Tech. Rep., Sept. 1984.Google Scholar
- [30]E. M. Buturla, P. E. Cottrell, B. M. Grossman, and K. A. Salsburg, Finite-element analysis of semiconductor devices: The FIELDAY program, IBM J. Res. Dev., 25, pp. 131–146(1981).CrossRefGoogle Scholar
- [31]T. Toyabe, H. Masuda, Y. Aoki, H. Shukuri, and T. Hagiwara, Three-dimensional device simulator CADDETH with highly convergent matrix solution algorithm, IEEE Trans. Computer-Aided Design, CAD-4, pp. 482–488 (1985).CrossRefGoogle Scholar
- [32]J. R. Brews, Physics of the MOS transistor, in
*Silicon Integrated Circuits*(D. Kahng, Ed.), pp. 1–120, Applied Solid-State Science Series, Supplement 2A, Academic Press, New York, 1981.Google Scholar - [33]Y. P. Tsividis,
*Operation and Modeling of the MOS Transistor*,McGraw-Hill Book Company, New York, 1987.Google Scholar - [34]H. J. Park, P. K. Ko and C. Hu, A charge sheet capacitance model of short channel MOSFETs for SPICE, IEEE Trans. Compter-Aided Design, CAD-10, pp. 376–389 (1991).CrossRefGoogle Scholar
- [35]A. R. Boothroyd, S. W. Tarasewicz, and C. Slaby, MISNAN-A physically based continuous MOSFET model for CAD applications, IEEE Trans. Compter-Aided Design, CAD-10, pp. 1512–1529 (1991).CrossRefGoogle Scholar
- [36]P. Antognetti and G. Massobrio, Eds.,
*Semiconductor Device Modeling with SPICE*, McGraw-Hill Book Company, New York, 1988.Google Scholar - [37]D. A. Divekar,
*FET Modeling for Circuit Simulation*,Kluwer Academic Publisher, Boston, 1988.CrossRefGoogle Scholar - [38]H. C. de Graaffand F. M. Klaassen,
*Compact Transistor Modelling for Circuit Design*, Springer-Verlag Wien, New York, 1990.MATHGoogle Scholar - [39]T. Shima, H. Yamada, and R. L. M. Dang, Table look-up MOSFET modeling system using 2-D device simulator and monotonic piecewise cubic interpolation, IEEE Trans. Computer-Aided Design, CAD-2, pp. 121–126 (1983).CrossRefGoogle Scholar
- [40]G. Bischoff and J. P. Krusius, Technology independent device modeling for simulation of integrated circuits for FET technologies, IEEE Trans. Computer-Aided Design, CAD-4, pp. 99–110 (1985).CrossRefGoogle Scholar
- [41]J. A. Barby, J. Vlach, and K. Singhal, Polynomial splines for MOSFET model approximation, IEEE Trans. Computer-Aided Design, CAD-7, pp. 557–565 (1988).CrossRefGoogle Scholar
- [42]T. Shima Table look-up MOSFET capacitance model for short channel devices, IEEE Trans. Computer-Aided Design, CAD-5, pp. 624–632 (1986).CrossRefGoogle Scholar
- [42a]R. F. Vogel, Analytical MOSFET model with easily extracted parameters, IEEE Trans. Computer-Aided Design, CAD-4, pp. 127–134 (1985).CrossRefGoogle Scholar
- [43]M. G. Buchler, Microelectronic test chips for VLSI electronics, in VLSI Electronics: Microstructure Science (N. G. Einspruch, Ed.), Vol. 6, Chap. 9, pp. 529–576, Academic Press Inc., New York, 1986.Google Scholar
- [44]K. Doganis and D. L. Scharfetter, General optimization and extraction of IC device model parameters, IEEE Trans. Electron Devices, ED-30, pp. 1219–1228 (1983).CrossRefGoogle Scholar
- [45]W. Maes, K. M. De Meyer, and L. H. Dupas, SIMPAR: A versatile technology independent parameter extraction program using new optimized fit strategy, IEEE Trans. Computer-Aided Design, CAD-5, pp. 320–325 (1986).CrossRefGoogle Scholar
- [46]M. S. Sharma and N. D. Arora, OPTIMA: A nonlinear model parameter extraction program with statistical confidence region algorithms, IEEE Trans. Computer-Aided Design, CAD-12, May (1993).Google Scholar
- [47]P. Yang and P. K. Chatterjee, SPICE modeling for small geometry MOSFET circuits, IEEE Trans. Computer-Aided Design, CAD-1, pp. 169–182 (1982).CrossRefGoogle Scholar
- [48]H. B. Bakoglu,
*Circuits, Interconnects and Packaging for VLSI*,Addison-Wesley Publishing Co., Reading MA, 1990.Google Scholar