• Narain Arora
Part of the Computational Microelectronics book series (COMPUTATIONAL)


Even though the operation of the modern Metal-Oxide-Semiconductor (MOS) transistor was first described by Lilienfield in 1930 [1], it was not until 1960 that the first MOS transistor using silicon as the semiconductor material was reported by Kang and Atalla [2]. The MOS technology became viable only after methods of routinely growing reliable oxides were developed and reported by Snow, Grove, Deal and Sah in 1964 [3]. Since that time the MOS industry has expanded very quickly. Today MOS integrated circuits (ICs) have emerged as the dominant technology in the semiconductor industry. The exponential growth in the number of components per chip and projections for the future are shown in Figure 1.1 [4]. Also shown is the minimum feature size that can be produced on a chip. The dotted lines are projections for the future. Clearly with this technology it is now possible to have more than a million transistors on a single chip. All this has been possible due to the fact that the basic MOS transistor size has shrunk by a factor of about 20 during the last two decades, from a feature size of 20 µm to less than a micron. Much of this shrinkage can be attributed to advances in lithography, the use of ion implantation, and low temperature annealing [4].


Equivalent Circuit Model VLSI Circuit Device Behavior VLSI Chip MOSFET Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. E. Lilienfield, US Patent 17, 45175 issued Jan. 28, 1930.Google Scholar
  2. [2]
    D. Kahng and M. M. Atalla, Silicon-silicon dioxide field induced surface devices, IRE Solid State Device Research Conference, Pittsburgh, PA 1960.Google Scholar
  3. [2a]
    D. Kahng, A historical perspective on the development of MOS transistors and related devices, IEEE Trans. Electron Devices, ED-23, pp. 655–660 (1976); J. D. Meindl, Ultralarge scale integration, ibid, ED-31, pp. 1555–1561 (1984).CrossRefGoogle Scholar
  4. [2b]
    J. D. Meindl, Ultralarge scale integration, Ibid, ED-31, pp. 1555–1561 (1984).Google Scholar
  5. [3]
    E. H. Snow, A. S. Grove, B. E. Deal, and C. T. Sah, Ion transport phenomena in insulating films, J. Appl. Phys., 36, pp. 1665–1673 (1965).CrossRefGoogle Scholar
  6. [4]
    S. M. Sze, Ed., VLSI Technology ,2nd Ed. McGraw-Hill Book Company, New York, 1988.Google Scholar
  7. [5]
    F. Faggin and T. Klein, Silicon gate technology, Solid-State Electron., 13, pp. 1125–1144(1970).CrossRefGoogle Scholar
  8. [6]
    J. A. Appels, E. Kooi, M. M. Paffen, J. J. H. Schiorje, and W. H. C. G. Verkuylen, Local oxidation of Silicon and its application in semiconductor technology, Philips Res. Rep., 25, pp. 118–132 (1970).Google Scholar
  9. [7]
    R. H. Dennard, F. H. Gaensslen, H. N. Yu, V. L. Rideout, E. Bassous, and A. R. LeBlanc, Design of ion-implanted MOSFETs with very small physical dimensions, IEEE J. Solid-State Circuits. SC-9, pp. 256–268 (1974).CrossRefGoogle Scholar
  10. [8]
    N. G. Einspruch and G. Gildenblat, Eds., Advanced MOS Device Physics ,VLSI Electronics: Microstructure Science, Vol. 18, Academic Press Inc., New York, 1989.Google Scholar
  11. [9]
    J. Y. Chen, CMOS-The emerging VLSI Technology, IEEE Circuits and Device Magazine, 2, pp. 16–331 (1986).Google Scholar
  12. [10]
    P. Ashburn, Design and Realization of Bipolar Transistors ,John Wiley &Sons, New York, 1988.Google Scholar
  13. [11]
    A. R. Alvarez, Ed., BICMOS Technology and Application ,Kluwer Academic Publisher, Boston, 1989.Google Scholar
  14. [12]
    S. K. Gandhi, VLSI Fabrication Principles ,John Wiley &Sons, New York, 1983.Google Scholar
  15. [13]
    A. Blicher, Field-Effect and Bipolar Power Transistor Physics ,Academic Press, Inc., New York 1981.Google Scholar
  16. [14]
    D. A. Grant and J. Gowar, Power MOSFETS-Theory and Application ,John Wiley &Sons, New York, 1989.Google Scholar
  17. [15]
    P. Antognetti, D. O. Pederson, and H. De Man, Eds., “Computer Design Aids for VLSI Circuits” ,NATO Advanced Institute 1980, Sigthoff &Noordhoff, Alphen aan den Rijn, The Netherlands, 1981.Google Scholar
  18. [16]
    A. E. Ruehli, Ed., Circuit Analysis, Simulation and Design ,North-Holland, New York, 1986.MATHGoogle Scholar
  19. [17]
    A. F. Schwarz, Computer-Aided Design of Microelectronic Circuits and Systems ,Vols. I and II, Academic Press, New York, 1987.Google Scholar
  20. [18]
    W. T. Weeks, A. J. Jimenez, G. W. Mahoney, D. Mehta, H. Qassemzadeh, and T. R. Scott, Algorithms for ASTAP-A network-analysis program, IEEE Trans, on Circuit Theory, CT-20, pp. 628–634 (1973). Also see, Program Reference Manual, Pub. no. SH20-1118-0, IBM Corp., Data Process Division, White Plains, NY 10604.Google Scholar
  21. [19]
    L. W. Nagel, SPICE2: A computer program to simulate semiconductor circuits, Memorandum No. UCB/ERL-M520, Electronic Res. Lab., University of California, Berkeley, May 1975.Google Scholar
  22. [20]
    R. Beresford and J. Domitrowich, Survey of circuit simulators, VLSI Design, Vol. 8, pp. 70–80, July 1987.Google Scholar
  23. [21]
    J. K. White and A. Sangiovanni-Vincentelli, Relaxation Techniques for the Simulation of VLSI Circuits ,Kluwer Academic Publisher, Boston, 1987.Google Scholar
  24. [22]
    D. A. Calhan, Computer-Aided Network Design ,revised Ed., McGraw-Hill Book Company, New York, 1972.Google Scholar
  25. [23]
    L. O. Chua and P. M. Lin, Computer-Aided Analysis of Electronic Circuits: Algorithms &Computational Techniques ,Prentice Hall, Englewood Cliffs, NJ, 1975.MATHGoogle Scholar
  26. [24]
    W. J. McCalla, Fundamentals of CAD Simulation ,Kluwer Academic Publisher, Boston, 1988.Google Scholar
  27. [25]
    S. Selberherr, Analysis and Simulation of Semiconductor Devices ,Springer-Verlag, Wien, New-York, 1984.CrossRefGoogle Scholar
  28. [26]
    C. M. Snowden, Semiconductor Device Modeling ,Peter Peregrinus Ltd., London, 1988.Google Scholar
  29. [27]
    K. M. Cham, S. Y. Oh, D. Chin, J. L. Moll, K. Lee, and P. V. Voorde, Computer-Aided Design and VLSI Device Development ,2nd Ed., Kluwer Academic Publisher, Boston, 1988.CrossRefGoogle Scholar
  30. [28]
    S. Selberherr, A. Schutz, and H. W. Potzel, MINIMOS-a two-dimensional MOS transistor analyzer, IEEE, ED-27, pp. 1540–1550 (1980); See also MINIMOS 3: A MOSFET simulator that includes energy balance, ibid, ED-34, pp. 1074–1078 (1987).Google Scholar
  31. [29]
    M. R. Pinto, C. S. Rafferty, and R. W. Dutton, PISCES-II: Poisson and continuity equation solver, Stanford Electronic Lab. Tech. Rep., Sept. 1984.Google Scholar
  32. [30]
    E. M. Buturla, P. E. Cottrell, B. M. Grossman, and K. A. Salsburg, Finite-element analysis of semiconductor devices: The FIELDAY program, IBM J. Res. Dev., 25, pp. 131–146(1981).CrossRefGoogle Scholar
  33. [31]
    T. Toyabe, H. Masuda, Y. Aoki, H. Shukuri, and T. Hagiwara, Three-dimensional device simulator CADDETH with highly convergent matrix solution algorithm, IEEE Trans. Computer-Aided Design, CAD-4, pp. 482–488 (1985).CrossRefGoogle Scholar
  34. [32]
    J. R. Brews, Physics of the MOS transistor, in Silicon Integrated Circuits (D. Kahng, Ed.), pp. 1–120, Applied Solid-State Science Series, Supplement 2A, Academic Press, New York, 1981.Google Scholar
  35. [33]
    Y. P. Tsividis, Operation and Modeling of the MOS Transistor ,McGraw-Hill Book Company, New York, 1987.Google Scholar
  36. [34]
    H. J. Park, P. K. Ko and C. Hu, A charge sheet capacitance model of short channel MOSFETs for SPICE, IEEE Trans. Compter-Aided Design, CAD-10, pp. 376–389 (1991).CrossRefGoogle Scholar
  37. [35]
    A. R. Boothroyd, S. W. Tarasewicz, and C. Slaby, MISNAN-A physically based continuous MOSFET model for CAD applications, IEEE Trans. Compter-Aided Design, CAD-10, pp. 1512–1529 (1991).CrossRefGoogle Scholar
  38. [36]
    P. Antognetti and G. Massobrio, Eds., Semiconductor Device Modeling with SPICE, McGraw-Hill Book Company, New York, 1988.Google Scholar
  39. [37]
    D. A. Divekar, FET Modeling for Circuit Simulation ,Kluwer Academic Publisher, Boston, 1988.CrossRefGoogle Scholar
  40. [38]
    H. C. de Graaffand F. M. Klaassen, Compact Transistor Modelling for Circuit Design, Springer-Verlag Wien, New York, 1990.MATHGoogle Scholar
  41. [39]
    T. Shima, H. Yamada, and R. L. M. Dang, Table look-up MOSFET modeling system using 2-D device simulator and monotonic piecewise cubic interpolation, IEEE Trans. Computer-Aided Design, CAD-2, pp. 121–126 (1983).CrossRefGoogle Scholar
  42. [40]
    G. Bischoff and J. P. Krusius, Technology independent device modeling for simulation of integrated circuits for FET technologies, IEEE Trans. Computer-Aided Design, CAD-4, pp. 99–110 (1985).CrossRefGoogle Scholar
  43. [41]
    J. A. Barby, J. Vlach, and K. Singhal, Polynomial splines for MOSFET model approximation, IEEE Trans. Computer-Aided Design, CAD-7, pp. 557–565 (1988).CrossRefGoogle Scholar
  44. [42]
    T. Shima Table look-up MOSFET capacitance model for short channel devices, IEEE Trans. Computer-Aided Design, CAD-5, pp. 624–632 (1986).CrossRefGoogle Scholar
  45. [42a]
    R. F. Vogel, Analytical MOSFET model with easily extracted parameters, IEEE Trans. Computer-Aided Design, CAD-4, pp. 127–134 (1985).CrossRefGoogle Scholar
  46. [43]
    M. G. Buchler, Microelectronic test chips for VLSI electronics, in VLSI Electronics: Microstructure Science (N. G. Einspruch, Ed.), Vol. 6, Chap. 9, pp. 529–576, Academic Press Inc., New York, 1986.Google Scholar
  47. [44]
    K. Doganis and D. L. Scharfetter, General optimization and extraction of IC device model parameters, IEEE Trans. Electron Devices, ED-30, pp. 1219–1228 (1983).CrossRefGoogle Scholar
  48. [45]
    W. Maes, K. M. De Meyer, and L. H. Dupas, SIMPAR: A versatile technology independent parameter extraction program using new optimized fit strategy, IEEE Trans. Computer-Aided Design, CAD-5, pp. 320–325 (1986).CrossRefGoogle Scholar
  49. [46]
    M. S. Sharma and N. D. Arora, OPTIMA: A nonlinear model parameter extraction program with statistical confidence region algorithms, IEEE Trans. Computer-Aided Design, CAD-12, May (1993).Google Scholar
  50. [47]
    P. Yang and P. K. Chatterjee, SPICE modeling for small geometry MOSFET circuits, IEEE Trans. Computer-Aided Design, CAD-1, pp. 169–182 (1982).CrossRefGoogle Scholar
  51. [48]
    H. B. Bakoglu, Circuits, Interconnects and Packaging for VLSI ,Addison-Wesley Publishing Co., Reading MA, 1990.Google Scholar

Copyright information

© Springer-Verlag/Wien 1993

Authors and Affiliations

  • Narain Arora
    • 1
  1. 1.Digital Equipment CorporationHudsonUSA

Personalised recommendations