Skip to main content

Abstract

The history of heparin dates back to 1916 when Jay Maclean, a PhD student in Howell’s laboratory, isolated an anticoagulant substance instead of the expected procoagulant phospholipids (1, 2). Since this substance was extracted from liver it was named heparin, in 1918, by Howell and Holt. Several years of debate then followed about the chemical nature of heparin (3). While it was initially thought to be a phospholipid, the polysaccharidic nature of heparin was suspected in 1925 and confirmed in the following years. However, the high complexity of the compound and the paucity of the analytical tools then available resulted in a very intricate situation where several authors proposed conflicting hypotheses regarding the nature of the different monosaccharides present as well as their substituents. It was only in the late 1960’s that the currently accepted chemical structure of heparin could be established (for a review, see (4)).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

All:

allyl

Ac:

acetyl

Bn:

benzyl

Me:

methyl

Z:

benzyloxycarbonyl

tBu:

ter-butyl

MCA:

monochloroacetyl

Lev:

levulinoyl

Tf:

trifluoromethylsulphonyl

Ph:

phenyl

TBDMS:

tert-butyldimethylsilyl

THP:

tetrahydropyranlyl

References

  1. Mclean, J.: The Thromboplastic Action of Cephalin. Am. J. Physiol. 41, 250 (1916).

    Google Scholar 

  2. Mclean, J.: The Discovery of Heparin. Circulation 19, 75 (1959). Eds. D.A. Lane and U. Lindhal.

    CAS  Google Scholar 

  3. Roden, L.: Highlights in the History of Heparin. In “Heparin”. (D.A. Lane and U. Lindahl, eds.), pp. 1–23. London: Edward Arnold. 1989.

    Google Scholar 

  4. Casu, B.: Structure and Biological Activity of Heparin. Adv. Carbohydr. Chem. Biochem. 43, 51 (1985).

    Article  CAS  Google Scholar 

  5. Lindahl, U., D.S. Feingold, and L. Roden: Biosynthesis of Heparin. Trends Biochem. Sci. 11, 221 (1986).

    Article  CAS  Google Scholar 

  6. Bjork, I., S.T. Olson, and J.D. Shore: Molecular Mechanisms of the Accelerating Effect of Heparin on the Reactions between Antithrombin and Clotting Proteinases. In “Heparin”. (D.A. Lane and U. Lindahl, eds.), pp. 229–255. London: Edward Arnold. 1989.

    Google Scholar 

  7. Verstraete, M.: Pharmacotherapeutic Aspects of Unfractioned and Low Molecular Weight Heparins. Drugs 40, 498 (1990).

    Article  CAS  Google Scholar 

  8. Jacques, L.B.: Heparins-Anionic Polyelectrolyte Drugs. Pharmacol. Rev. 31, 99 (1979).

    Google Scholar 

  9. Clowes, A.W. and M.J. Karnovsky: Suppression by Heparin of Smooth Muscle Cell Proliferation in Injured Arteries. Nature 265, 625 (1977).

    Article  CAS  Google Scholar 

  10. Folkman, J.: Regulation of Angiogenesis: A New Function of Heparin. Biochem. Pharmacol. 34, 905 (1985).

    Article  CAS  Google Scholar 

  11. Baba, M., R. Pauwels, J. Balzarini, J. Desmyter, and E. De Clercq: Antiviral Activity of Heparin and Dextran Sulphate against Human Immunodeficiency Virus (HIV) in Vitro. Ann. N.Y. Acad. Sci. 556, 419 (1989).

    Article  Google Scholar 

  12. Andersson, L.O., T.W. Barrowcliffe, E. Holmer, E.A. Johnson, and G.E.C. Sims: Anticoagulant Properties of Heparin Fractionated by Affinity Chromatography on matrix-bound Antithrombin III and by Gel Filtration. Thromb. Res. 9, 575 (1976).

    Article  CAS  Google Scholar 

  13. Hook, M., I. Bjork, J. Hopwood, and U. Lindahl: Anticoagulant Activity of Heparin: Separation of High Activity and Low Activity Heparin Species by Affinity Chromatography on Immobilized Antithrombin. FEBS Lett. 66, 90 (1976).

    Article  CAS  Google Scholar 

  14. Lam, L.H., J.E. Silbert, and R.D. Rosenberg: The Separation of Active and Inactive Forms of Heparin. Biochem. Biophys. Res. Commun. 69, 570 (1976).

    Article  CAS  Google Scholar 

  15. Choay, J., J.C. Lormeau, M. Petitou, P. Sinay, and J. Fareed: Structural Studies on a Biologically Active Hexasaccharide Obtained from Heparin. Ann. N.Y. Acad. Sci. 370, 644 (1981).

    Article  CAS  Google Scholar 

  16. Thunberg, L., G. Backstrom, and U. Lindahl: Further Characterization of the Antithrombin-binding Sequence in Heparin. Carbohydr. Res. 100, 393 (1982).

    Article  CAS  Google Scholar 

  17. Lindahl, U., G. Backstrom, L. Thunberg, and I.G. Leder: Evidence for a 3-O-sulphated D-glucosamine Residue in the Antithrombin-binding Sequence of Heparin. Proc. Natl. Acad. Sci. USA 77, 6551 (1980).

    Article  CAS  Google Scholar 

  18. Klemer, A., and U. Kraska: Synthese von Athyl-2-Amino-2-Desoxy-4-O-(β-D-Glucuronopyranosyl)-a, β-D-Glucopyranosid. Tetrahedron Lett. 13, 431 (1972).

    Article  Google Scholar 

  19. Kiss, J., and P. Taschner: Synthesis of Heparin Saccharides. VI. Synthesis and Reactivity of some 4-O-(α-D-Hexopyranosyl)-α-D-Glucopyranosiduronate Derivatives. J. Carbohydr. Nucl. Nuc. 4, 101 (1977).

    CAS  Google Scholar 

  20. Kiss, J., and P.C. Wyss: Synthesis of Heparin Saccharides. Stereospecific Synthesis of Derivatives of 2-Amino-2-Deoxy-4-O-(a-D-Glucopyranuronosyl)-D-Glucose. Tetrahedron Lett. 13, 3055 (1972).

    Article  Google Scholar 

  21. Kiss, J., and P.C. Wyss: Synthesis of Heparin Saccharides. II. Synthesis and Stereochemical Aspects of Anomeric Methyl (Benzyl 2,3-di-O-Benzyl-L-Idopyranosid) Uronates. Carbohydr. Res. 27, 282 (1973).

    Article  CAS  Google Scholar 

  22. Kiss, J., and P.C. Wyss: Synthesis of Heparin Saccharides. V. Anomeric O-Benzyl Derivatives of L-Idopyranosyluronic Acid. Tetrahedron 32, 1399 (1976).

    Article  CAS  Google Scholar 

  23. Wyss, P.C., and J. Kiss: Synthesis of Heparin Saccharides. III. Synthesis of Derivatives of D-Glucosamine as Starting Materials for Disaccharides. Helv. Chim. Acta 58, 1833 (1975).

    Article  CAS  Google Scholar 

  24. Wyss, P.C., J. Kiss, and W. Arnold: Synthesis of Heparin Saccharides. IV. Synthesis of Disaccharides Possessing the Structure of a Repeating Unit of Heparin. Helv. Chim. Acta 58, 1847 (1975).

    Article  CAS  Google Scholar 

  25. Paulsen, H.: Advances in Selective Chemical Syntheses of Complex Oligosaccharides. Angew. Chem. Int. Ed. Engl. 21, 155 (1982).

    Article  Google Scholar 

  26. Schmidt, R.R.: New Methods for the Synthesis of Glycosides and Oligosaccharides-Are There Alternatives to the Koenigs-Knorr Method? Angew. Chem. Int. Ed. Engl. 25, 212 (1986).

    Article  Google Scholar 

  27. Wessel, H.P., Alkylating γ-Lactone-Opening: a short Synthesis of benzyl 3-O-Benzyl-1,2-O-Isopropylidene-α-D-Glucofuranuronate. J. Carbohydr. Chem. 8, 443–455 (1989).

    Article  CAS  Google Scholar 

  28. Sinay, P., J.C. Jacquinet, M. Petitou, P. Duchaussoy, I. Lederman, J. Choay, and G. Torri: Total Synthesis of a Heparin Pentasaccharide Fragment having High Affinity for Antithrombin III. Carbohydr. Res. 132, C5 (1984).

    CAS  Google Scholar 

  29. Petitou, M., P. Duchaussoy, I. Lederman, J. Choay, P. Sinay, J.C. Jacquinet, and G. Torri: Synthesis of Heparin Fragments. A Chemical Synthesis of the Pentasaccharide O-(2-Deoxy-2-Sulfamido-6-O-Sulfo-α-D-Glucopyranosyl)-(l→4)-O-(β-D-Glucopyranosyluronic Acid)-(1→4)-O-(2-Deoxy-2-Sulfamido-3,6-di-O-Sulfo-α-D-Glucopyranosyl)-(1→4)-O-(2-O-Sulfo-α-L-Idopyranosyluronic Acid)-(1→4)-2-Deoxy-2-Sulfamido-6-O-sulfo-D-Glucopyranose Decasodium Salt, a Heparin Fragment Having High Affinity for Antithrombin III. Carbohydr. Res. 147, 221 (1986).

    CAS  Google Scholar 

  30. Zissis, E., and H.G. Fletcher Jr.: Benzyl 2,3,4-Tri-O-Benzyl-β-D-Glucopyranosiduronic Acid and some Related Compounds. Carbohydr. Res. 12, 361 (1970).

    Article  CAS  Google Scholar 

  31. Mehltretter, C.L.: D-Glucuronic acid: α-D-Glucofuranurono-6,3-Lactone by Catalytic Air Oxidation of 1,2-O-Isopropylidene-α-D-Glucofuranose. Meth. Carbohydr. Chem. vol II, 29 (1963).

    Google Scholar 

  32. Nakahara, Y, and T. Ogawa: Synthesis of Methyl (Allyl 2,3-di-O-Benzyl-β-D-Galactopyranosid) Uronate and Methyl (2,3-di-O-Benzyl-α- and β-D-Galactopyranosyl Fluoride)Uronate. Carbohydr. Res. 173, 306 (1988).

    Article  Google Scholar 

  33. Nakahara, Y., and T. Ogawa: Stereoselective Total Synthesis of Dodecagalacturonic Acid, a Phytoalexin Elicitor of Soybean. Carbohydr. Res. 205, 147 (1990).

    Article  CAS  Google Scholar 

  34. Van Boeckel, C.A.A., T. Beetz, J.N. Vos, A.J.M. de Jong, S.F. van Aelst, R.H. van den Bosch, J.M.R. Mertens, and van der Vlugt, F.A.: Synthesis of a Pentasaccharide Corresponding to the Antithrombin III Binding Fragment of Heparin. J. Carbohydr. Chem. 4, 293 (1985).

    Article  Google Scholar 

  35. Meyer, A.S., and T. Reichstein: L-Idose aus D-Glucose, sowie ein neuer Weg zur L-Idomethylose. Helv. Chem. Acta 29, 152 (1946).

    Article  CAS  Google Scholar 

  36. Perchemlides, P., T. Osawa, E.A. Davidson, and R.W. Jeanloz: Synthesis of α-L-Idopyranosyl, (α-L-Idopyranosyluronic Acid), α-D-Mannopyranosyl, and (α-D-Mannopyranosyluronic Acid) Phosphates. Carbohydr. Res. 3, 463 (1967).

    Article  CAS  Google Scholar 

  37. Dax, K., I. Macher, and H. Weidmann: Reaktionen der D-glucuronsäure. 8.Mitt. Synthese von Derivaten der L-Idofuranose und des D-Mannofuranurono-6,3-Lactons aus D-Glucofuranurono-6,3-Lacton. J. Carbohydr. Nue. Nue. 1, 323 (1974).

    CAS  Google Scholar 

  38. Blanc-Muesser, M., J. Defaye, D. Horton, and J.H. Tsai: L-Idose and L-Iduronic Acid. Meth. Carbohydr. Chem. 8, 177 (1980).

    CAS  Google Scholar 

  39. Bagget, N., and A.K. Samra: Re-Examination of the Acid Hydrolysis of 5,6-Anhydro-1,2-O-Isopropylidene-β-L-Idofuranose. Carbohydr. Res. 127, 149 (1984).

    Article  Google Scholar 

  40. Lehmann, J.: Reaktionen Enolischer Zuckerderivate. Teil 1. Hydroborierung enolischer Zuckerderivate, ein Weg zur Darstellung schwer zugänglicher Hexosen und zur spezifischen Markierung mit Tritum. Carbohydr. Res. 2, 1 (1966).

    Article  CAS  Google Scholar 

  41. Nassr, M.A.M., M. Petitou, J. Choay, and P. Sinay: Synthèse de Disaccharides Contenant le L-Idopyrannose à l’Extrémité non-Réductrice. Xèmes Journées sur la Chimie et la Biochimie des Glucides, Paris, 5–7 juillet 1982.

    Google Scholar 

  42. Ichikawa, Y., and H. Kuzuhara: Synthesis of 1,6-Anhydro-2,3-di-O-Benzoyl-4-O-(methyl-2,3,4-tri-O-Benzoyl-α-L-Idopyranosyluronate)-β-D-Glucopyranose from Cellobiose. Carbohydr. Res 115, 117 (1983).

    Article  CAS  Google Scholar 

  43. Bagget, N., and A. Smithson: Synthesis of L-Iduronic Acid Derivatives by Epimerisation of Anancomeric D-Glucuronic Acid Analogues. Carbohydr. Res. 108, 59 (1982).

    Article  Google Scholar 

  44. Chiba, T., and P. Sinay: Application of a Radical Reaction to the Synthesis of L-Iduronic acid Derivatives from D-Glucuronic Acid Analogues. Carbohydr. Res. 151, 379 (1986).

    Article  CAS  Google Scholar 

  45. Chida, N., E. Yamada, and S. Ogawa: Synthesis of Methyl (Methyl D- and L-Idopyranosid) uronates from Myo-Inositol. J. Carbohydr. Chem. 7, 555 (1988).

    Article  CAS  Google Scholar 

  46. Ichikawa, Y., R. Monden, and H. Kuzuhara: Synthesis of a Heparin Pentasaccharide Fragment with a High Affinity for Antithrombin III Employing Cellobiose as a Key Starting Material. Tetrahedron Lett. 27, 611 (1986).

    Article  CAS  Google Scholar 

  47. Ichikawa, Y., A. Manaka, and H. Kuzuhara: Discrimination between the 2,3- and the 2′,3′-Hydroxyl Groups of Maltose and Cellobiose through their Specific Protection. Carbohydr. Res. 138, 55 (1985).

    Article  CAS  Google Scholar 

  48. Ichikawa, Y., R. Ichikawa, and H. Kuzuhara: Synthesis from Cellobiose, of a Trisaccharide Closely Related to the GlcNAc → GlcA → GlcN Segment of the Antithrombin-binding Sequence of Heparin. Carbohydr. Res. 141, 273 (1985).

    Article  CAS  Google Scholar 

  49. Ichikawa, Y., R. Monden, and H. Kuzuhara: Synthesis of Methyl Glycoside Derivatives of Tri- and Penta-saccharides Related to the Antithrombin III-binding Sequence of Heparin, employing Cellobiose as a Key Starting Material. Carbohydr. Res. 172, 37 (1988).

    Article  CAS  Google Scholar 

  50. Shing, T.K.M., and A.S. Perlin: Synthesis of Benzyl 2-Azido-2-Deoxy-4-O-β-D-Glucopyranosyl-α-D-Glucopyranoside and 1,6-Anhydro-2-Azido-2-Deoxy-4-O-β-D-Glucopyranosyl-β-D-Glucopyranose. Carbohydr. Res. 130, 65 (1984).

    Article  CAS  Google Scholar 

  51. Glushka, J.N., D.N. Gupta, and A.S. Perlin: The Conversion of Maltose into Disaccharides having 2-Amino-2-Deoxy-α-D-Glucose and L-Idose as Constituent Sugars, for the Synthesis of Model Compounds Related to Heparin. Carbohydr. Res. 124, C12 (1983).

    Article  CAS  Google Scholar 

  52. Glushka, J.N., and A.S. Perlin: Formation of Disaccharides related to Heparin and Heparan Sulphate by Chemical Modification of Maltose. Carbohydr. Res. 205, 305 (1990).

    Article  CAS  Google Scholar 

  53. Ueno, Y., K. Hori, R. Yamauchi, M. Kiso, A. Hasegawa, and K. Kato: Reaction of Maltose with 2,2-Dimethoxypropane. Carbohydr. Res. 89, 271 (1981).

    Article  CAS  Google Scholar 

  54. Petitou, M., P. Duchaussoy, I. Lederman, J. Choay, J.C. Jacquinet, P. Sinay, and G. Torri: Synthesis of Heparin Fragments: A Methyl α-Pentaoside with High Affinity for Antithrombin III. Carbohydr. Res. 167, 67 (1987).

    Article  CAS  Google Scholar 

  55. Petitou, M., G. Jaurand, M. Derrien, P. Duchaussoy, and J. Choay: A New Highly Potent, Heparin-like Pentasaccharide Fragment Containing a Glucose Residue instead of a Glucosamine. BioMed. Chem. Lett. 1, 95 (1991).

    Article  CAS  Google Scholar 

  56. Walenga, J.M., J. Fareed, M. Petitou, M. Samama, J.C. Lormeau, and J. Choay: Intravenous Antithrombotic Activity of a Synthetic Heparin Pentasaccharide in a Human Serum Induced Stasis Thrombosis Model. Thromb. Res. 43, 243 (1986).

    Article  CAS  Google Scholar 

  57. Walenga, J.M., M. Petitou, J.C. Lormeau, M. Samama, J. Fareed, and J. Choay: Antithrombotic Activity of a Synthetic Heparin Pentasaccharide in a Rabbit Stasis Thrombosis Model using Different Thrombogenic Challenges. Thromb. Res. 46, 187 (1987).

    Article  CAS  Google Scholar 

  58. Hobbelen, P.M.J., T.G. van Dinther, G.M.T. Vogel, C.A.A. van Boeckel, H.C.T. Moelker, D.G. Meuleman: Pharmacological Profile of the Chemically Synthesized Antithrombin III Binding Fragment of Heparin (pentasaccharide) in Rats. Thromb. Haemost. 63, 265–270 (1990).

    CAS  Google Scholar 

  59. Meuleman, D.G., P.M.J. Hobbelen, T.G. van Dinther, G.M.T. Vogel, C.A.A. van Boeckel, and H.C.T. Moelker: Anti-factor Xa Activity and Antithrombotic Activity in Rats of Structural Analogues of the Minimum Antithrombin III binding Sequence: Discovery of Compounds with A Longer Duration of Action than of the Natural Pentasaccharide. Semin. Thromb. Hemostasis 17, 112 (1991).

    Google Scholar 

  60. Loganathan, D., H.M. Wang, L.M. Mallis, and R.J. Linhardt: Structural Variation in the Antithrombin III Binding Site Region and its Occurrence in Heparin from Different Sources. Biochemistry 29, 4362 (1990).

    Article  CAS  Google Scholar 

  61. Duchaussoy, P., P.S. Lei, M. Petitou, P. Sinay, J.C. Lormeau, and J. Choay: The First Total Synthesis of the Antithrombin III Binding Site of Porcine Mucosa Heparin. BioMed. Chem. Lett 1, 99 (1991).

    Article  CAS  Google Scholar 

  62. Lindahl, U., G. Backstrom, and L. Thunberg: The Antithrombin-Binding Sequence in Heparin. Identification of an essential 6-O-Sulfate Group. J. Biol. Chem. 258, 9826 (1983).

    CAS  Google Scholar 

  63. Atha, D.H., J.C. Lormeau, M. Petitou, R.D. Rosenberg, and J. Choay: Contribution of Monosaccharide Residues in Heparin Binding to Antithrombin III. Biochemistry 24, 6723 (1985).

    Article  CAS  Google Scholar 

  64. Riesenfeld, J., L. Thunberg, M. Hook, and U. Lindahl: The Antithrombin-Binding Sequence of Heparin. Location of Essential N-Sulfate Groups. J. Biol. Chem. 256, 2389 (1981).

    CAS  Google Scholar 

  65. Petitou, M.: Synthetic Heparin Fragments: New and Efficient Tools for the Study of Heparin and its Interactions. Nouv. Rev. Fr. Hematol. 26, 221 (1984).

    CAS  Google Scholar 

  66. Choay, J.: Biologic Studies on Chemically Synthesized Pentasaccharide and Tetrasaccharide Fragments. Semin. Thromb. Hemostasis 11, 81 (1985).

    Article  CAS  Google Scholar 

  67. Petitou, M., P. Duchaussoy, L. Lederman, J. Choay, and P. Sinay: Binding of Heparin to Atithrombin III: a Chemical Proof of the Critical Role played by a 3-Sulfated-2-Amino-2-Deoxy-D-Glucose Residue. Carbohydr. Res. 179, 163 (1988).

    Article  CAS  Google Scholar 

  68. Atha, D.H., J.-C. Lormeau, M. Petitou, R.D. Rosenberg, and J. Choay: Contribution of 3-O- and 6-O-Sulfated Glucosamine Residues in the Heparin Induced Conformational Change in Antithrombin III, Biochemistry 26, 6454 (1987).

    Article  CAS  Google Scholar 

  69. Beetz, T., and C.A.A. van Boeckel: Synthesis of an Antithrombin Binding Heparin-like Pentasaccharide lacking 6-O-Sulfate at its Reducing End. Tetrahedron Lett. 27, 5889 (1986).

    Article  CAS  Google Scholar 

  70. Petitou, M., J.C. Lormeau, and J. Choay: Interaction of Heparin and Antithrombin III. The Role of O-Sulfate Groups. Eur. J. Biochem. 88, 637 (1988).

    Article  Google Scholar 

  71. Petitou, M., P. Duchaussoy, and J. Choay: p-Anisyl Ethers in Carbohydrate Chemistry: Selective Protection of the Primary Alcohol Function. Tetrahedron Lett. 1389, (1988).

    Google Scholar 

  72. van Boeckel, C.A.A., et al.: unpublished results.

    Google Scholar 

  73. Agarwal, A., and I. Danishefsky: Requirement of free Carboxyl Groups for the Anticoagulant Activity of Heparin, Thromb. Res. 42, 673 (1986).

    Article  CAS  Google Scholar 

  74. van Boeckel, C.A.A., H. Lucas, S.F. van Aelst, M.W.P. van den Nieuwenhof, G.N. Wagenaars, and J.-R. Mellema: Synthesis and Conformational Analysis of an Analogue of the Antithrombin-binding Region of Heparin: the Role of the Carboxylate Function of α-L-Idopyranuronate. Reel. Trav. Chim. Pays-Bas 106, 581 (1987).

    Article  Google Scholar 

  75. van Aelst, S.F., and C.A.A. van Boeckel: Synthesis of an Analogue of the Antithrombin Binding Region of Heparin containing α-L-Idopyranose; Reel. Trav. Chim. Pays-Bas 106, 593 (1987).

    Article  Google Scholar 

  76. Vos, J., et al.: unpublished results.

    Google Scholar 

  77. Petitou, M., et al.: unpublished results.

    Google Scholar 

  78. van Boeckel, C.A.A., T., Beetz, and S.F. van Aelst: Synthesis of a potent Antithrombin activating Pentasaccharide: A new Heparin-like Fragment Containing two 3-O-Sulphated Glucosamines. Tetrahedron Lett. 803 (1988).

    Google Scholar 

  79. van Boeckel, C.A.A., S.F. van Aelst, T. Beetz, D.G. Meuleman, Th.G. van Dinther, and H.C.T. Moelker: Structure-Activity Relationships of Synthetic Heparin Fragments: Discovery of a very Potent AT-III Activating Pentasaccharide. Ann. N.Y. Acad. Sci. 556, 489, 1989.

    Article  Google Scholar 

  80. Visser, A., M.T. Buiting, T.G. van Dinther, C.A.A. van Boeckel, P.D.J. Grootenhuis, and D.G. Meuleman: The AT-III Binding Affinities of a Series of Synthetic Pentasaccharide Analogues. Thromb. Haemost. 65, 1296 (1991).

    Google Scholar 

  81. Barzu, T., M. Petitou, G. Jaurand, J.C. Lormeau, and J. Choay: Binding to Antithrombin III of the synthetic Oligosaccharides derived from the High Affinity Pentasaccharide Sequence of Heparin. Thromb. Haemost. 65, 934 (1991).

    Google Scholar 

  82. Petitou, M., J.C. Lormeau, and J. Choay: A New Synthetic Pentasaccharide with Increased Anti-Factor Xa Activity: Possible Role for Anionic Clusters in the Interaction of Heparin and Antithrombin III. Semin. Thromb. Hemostasis 17,143, (1991).

    Google Scholar 

  83. Basten, J., G. Jaurand, et al.: unpublished results.

    Google Scholar 

  84. Basten, J., et al.: unpublished results.

    Google Scholar 

  85. Kat-Vanden Nieuwenhof, M.W.P., J.E.M. Basten, M. Lucas, and C.A.A. van Boeckel: Synthesis of some very potent Antithrombin III activating Heparin-Like Fragments. Fifth European Symposium on Carbohydrates, Eurocarb V, Prague, 21–25 August 1989. Abstr. A-39.

    Google Scholar 

  86. Petitou, M., G. Jaurand, M. Derrien, P. Duchaussoy, and J. Choay: Synthesis of selectively oversulfated Heparin-Like Pentasaccharides with high anti-factor Xa Activity. Fifth European Symposium on Carbohydrates, Eurocarb V, Prague, 21–25 August 1989. Abstr. A-68.

    Google Scholar 

  87. van Boeckel, C.A.A., G.N. Wagenaars, and J.R. Mellema: Conformational Analysis of a Biological Active Heparin-like Compound, which Contains an Open Chain Fragment. Reel. Trav. Chim. Pays-Bas 107, 649 (1988).

    Article  Google Scholar 

  88. Lucas, H., J.E.M. Basten, Th.G. van Dinther, D.G., Meuleman, S.F. van Aelst, and C.A.A. van Boeckel: Synthesis of Heparin-Like Pentamers Containing “Opened” Uronic Acid Moieties. Tetrahedron 46, 8207 (1990).

    Article  CAS  Google Scholar 

  89. Wessel, H.P., L. Labler, and T.B. Tschopp: Synthesis of an N-Acetylated Heparin Pentasaccharide and its Anticoagulant Activity in Comparison with the Heparin Pentasaccharide with High anti-Factor-Xa Activity. Helv. Chem. Acta 72, 1268 (1989).

    Article  CAS  Google Scholar 

  90. Kraaijeveld, N.A., and C.A.A. van Boeckel: Synthesis of Several Sulphated and Non-Sulphated Pentasaccharides, corresponding to the E. Coli K5 Glycosaminoglycan. Reel. Trav. Chem. Pays-Bas 108, 39 (1989).

    Article  CAS  Google Scholar 

  91. Vos, J.N., P. Westerduin, and C.A.A. van Boeckel: Synthesis of a 6-O-Phosphorylated Analogue of the Antithrombin III Binding Sequence of Heparin. BioMed. Chem. Lett. 1, 143 (1991).

    Article  CAS  Google Scholar 

  92. Kanyo, Z.F., and D.W. Christianson: Biological Recognition of Phosphate and Sulfate. J. Biol. Chem. 266, 4264 (1991).

    CAS  Google Scholar 

  93. Edge, A.S.B., and R.G. Spiro: Characterization of novel Sequences Containing 3-O-Sulfated Glucosamine in Glomerular Basement Membrane Heparan Sulfate and Localization of Sulfated Disaccharides to a Peripheral Domain. J. Biol. Chem. 265, 15874 (1990).

    CAS  Google Scholar 

  94. Nukada, T., H. Lucas, P. Konradsson, and C.A.A. van Boeckel,: Syntheses of larger Modified Oligosaccharides Containing “Opened Carbohydrate” Fragments. Synlett 365 (1991).

    Google Scholar 

  95. Lemieux, R.U., K.B. Hendriks, R.V. Stick, and K. James: Halide Ion Catalyzed Glycosidation Reactions. Synthesis of α-linked Disaccharides. J. Am. Chem. Soc. 97, 4056 (1975).

    Article  CAS  Google Scholar 

  96. Lucas, H., J. Basten, P. Konradsson, B. Olde Hanter, C.A.A. van Boeckel, G, Jaurand, P. Duchaussoy, M. Derrien, and M. Petitou: Syntheses and Structure-Activity Relationships of some new Potent Analogues of Heparin; Preparation of Alkylated “Non-Glycsoaminoglycans”. Presented at Eurocarb VI, Vlth European Symposium Carbohydrate Chemistry, Edinburgh Sept. 1991. Abstract B. 170.

    Google Scholar 

  97. Meuleman, D., et al.:, to be published.

    Google Scholar 

  98. Gatti, G., B. Casu, G.K. Hamer, and A.S. Perlin: Studies on the Conformation of Heparin by 1H- and 13C-NMR Spectroscopy. Macromolecules 12, 1001 (1979).

    Article  CAS  Google Scholar 

  99. Torri, G., B. Casu, G. Gatti, M. Petitou, J. Choay, J.C. Jacquinet, and P. Sinay: Mono- and Bidimensional 500 MHz 1H-NMR Spectra of a Synthetic Pentasaccharide Corresponding to the Binding Sequence of Heparin to Antithrombin III: Evidence for Conformational Peculiarity of the Sulphated Iduronate Residue. Biochem. Bio-phys. Res. Commun. 128, 134 (1985).

    Article  CAS  Google Scholar 

  100. Ragazzi, M., D.R. Ferro, and A. Provasoli: A Force-field Study of the Conformational Characteristics of the Iduronate Ring. J. Comput. Chem. 7, 105 (1986).

    Article  CAS  Google Scholar 

  101. van Boeckel, C.A.A., S.F. van Aelst, G.N. Wagenaars, J.R. Mellema, H. Paulsen, J. Peters, A. Pollex, and V. Sinnwell: Conformational Analysis of Synthetic Heparin-like Oligosaccharides Containing α-L-Idopyranosyluronic Acid. Reel. Trav. Chim. Pays-Bas 106, 19 (1987).

    Article  Google Scholar 

  102. Ferro, D.R., A. Provasoli, M. Ragazzi, B. Casu, G. Gatti, G. Torri, V. Bossennec, B. Perly, P. Sinay, M. Petitou, and J. Choay: Conformer Populations of L-Iduronate Acid Residue in Glycosaminoglycan Sequences. Carbohydr. Res. 195, 157 (1990)

    Article  CAS  Google Scholar 

  103. Ferro, D.R., A. Provasoli, M. Ragazzi, B. Casu, G. Gatti, J.C. Jacquinet, P. Sinay, M. Petitou, and J. Choay: Evidence for Conformational Equilibrium of the Sulphated L-Iduronate Residue in Heparin and in Synthetic Heparin Mono- and Oligosaccharides: MNR and Force-field Studies. J. Am. Chem. Soc. 108, 6773 (1986).

    Article  CAS  Google Scholar 

  104. Sanderson, P.N., T.N. Huckerby, and I.A. Nieduszynski: Conformational Equilibrium of Unsulphated Iduronate in Heparan Sulphate Tetrasaccharides. Glycoconjugate J. 2, 109 (1985).

    Article  Google Scholar 

  105. Paulsen, H., A. Pollex, V. Sinnwell, and C.A.A. van Boeckel: Konformationsanalyse von Heparin-analogen Di- und Trisacchariden mit α-L-Idopyranose-Einheiten. Liebigs Ann. Chem. 411 (1988).

    Google Scholar 

  106. Meyer, B., and R. Stuike-Prill: Syntheses of Benzyl 6-O-Sulfo-β-D-Glucopyranoside Salts and their 6-S-Deuterated Analogues. Conformational Preferences of their (Sulfonyloxy)methyl Group. J. Org. Chem. 55, 902 (1990).

    Article  CAS  Google Scholar 

  107. Nishida, Y., H. Hori, H. Ohrui, and H. Meguro: 1HNMR Analyses of Rotameric Distribution of C5-C6 Bonds of Glucopyranoses in Solution. J. Carbohydr. Chem. 7, 239 (1988).

    Article  CAS  Google Scholar 

  108. Ragazzi, M., D.R. Ferro, B. Perly, P. Sinay, M. Petitou, and J. Choay: Conformation of the Pentasaccharide Corresponding to the Binding Site of Heparin for Antithrombin III. Carbohydr. Res. 195, 169 (1990).

    Article  CAS  Google Scholar 

  109. Grootenhuis, P.D.J., and C.A.A. van Boeckel: Constructing a Molecular Model of the Interaction between Antithrombin III and a Potent Heparin Analogue. J. Am. Chem. Soc. 113, 2743 (1991).

    Article  CAS  Google Scholar 

  110. Jaurand, G., J. Basten, I. Lederman, C.A.A. van Boeckel, M. Petitou: Biologically Active Heparin-Like Fragments with a “Non-Glycosamino” glycan Structure. Part 1: A Pentasaccharide Containing a 3-O-Methyl Iduronic Acid Unit. BioMed. Chem. Lett. 2, 897 (1992).

    Article  CAS  Google Scholar 

  111. Basten, J., G. Jaurand, B. Olde-Hanter, M. Petitou, C.A.A. van Boeckel: Biologically Active Heparin-like Fragments with a “Non-Glycosamino”glycan Structure. Part 2: A Tetra-O-Methylated Pentasaccharide with High Affinity for Antithrombin III. BioMed. Chem. Lett. 2, 901 (1992).

    Article  CAS  Google Scholar 

  112. Basten, J., G. Jaurand, B. Olde-Hanter, P. Duchaussoy, M. Petitou, C.A.A. van Boeckel: Biologically Active Heparin-like Fragments with a “Non-Glycosamino”glycan Structure. Part 3: O-Alkylated-O-Sulphated Pentasaccharides. BioMed. Chem. Lett. 2, 905 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag/Wien

About this chapter

Cite this chapter

Petitou, M., van Boeckel, C.A.A. (1992). Chemical Synthesis of Heparin Fragments and Analogues. In: Herz, W., Kirby, G.W., Moore, R.E., Steglich, W., Tamm, C. (eds) Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products. Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products, vol 60. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9225-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9225-2_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-9227-6

  • Online ISBN: 978-3-7091-9225-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics