Advertisement

Self-excited vibrations of a flexible disk rotating on an air film above a flat surface

  • H. Hosaka
  • S. H. Crandall
Part of the Acta Mechanica book series (ACTA MECH.SUPP., volume 3)

Summary

Self-excited vibration of a spinning flexible disk is studied to provide design guidance for high speed magnetic disk storage devices. The dynamic model includes coupling between vibrations of a rotating plate and waves in an incompressible viscous fluid film. A single-mode approximation is used to estimate the critical speed and the influence of the various disk and air-film parameters is noted. A simple physical explanation of the instability mechanism is given and the critical speeds for several disk configurations are estimated. More accurate numerical procedures are described and the results of calculations for a particular disk system are compared with the single-mode approximation.

Keywords

Critical Velocity Critical Speed Nodal Line Membrane Stiffness Flexible Disk 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, G. G.: Analysis of the flexible disk, head interface. J. Lubr. Technol. 102, 1, 86–90 (1980)CrossRefGoogle Scholar
  2. Adams, G. G.: Critical speeds for a flexible spinning disk. Int. J. Mech. Sci. 29, 8, 525 — 531 (1987)Google Scholar
  3. Bilharz, H.: Bemerkungen zu einem Satz von Hurwitz. ZAMM 24, 77–82 (1944).MathSciNetCrossRefMATHGoogle Scholar
  4. Bogy, D. G., Talke, F. E.: Steady axisymmetric solutions for pressurized rotating flexible disk packs. IBM J. Res. Develop. 22, 2, 179–184 (1978).MATHGoogle Scholar
  5. Hosaka, H., Nishida, Y.: An elastohydrodynamic analysis of back-plate-type foil disks. ASLE SP-22, 167 —173 (1987).Google Scholar
  6. Itao, K., Crandall, S. H.: Natural modes and natural frequencies of uniform, circular, free-edge plates. J. Appl. Mech. 46, 2, 448–453 (1979).ADSCrossRefMATHGoogle Scholar
  7. Lamb, H., Southwell, R.: The vibrations of a spinning a disk. Proc. Roy. Soc. (London) A 99, 272— 280 (1921)Google Scholar
  8. Licari, J. R, King, F. K.: Elastohydrodynamic analysis of head to flexible disk interface phenomena. J. Appl. Mech. 48, 4, 763–768 (1981).ADSCrossRefMATHGoogle Scholar
  9. Ono, K., Maeno, T.: Theoretical and experimental investigation on dynamic characteristics of a 3.5-inch flexible disk due to a point contact head. ASLE SP-21, 144–151, 1986.Google Scholar
  10. Pearson, R. T.: The development of the flexible-disk magnetic recorder. Proc. IRE 49, 1, 164–174 (1961)CrossRefGoogle Scholar
  11. Pelech, I., Shapiro, A. H.: Flexible disk rotating on a gas film next to a wall. J. Appl. Mech. 31, 4, 577 — 584 (1964).Google Scholar
  12. Pinkus, O., Lund, J. W.: Centrifugal effects in thrust bearings and seals under laminar conditions. J. Lubr. Technol. 103, 1, 126–136 (1981).Google Scholar
  13. Robertson, D.: Whirling of a journal in a sleeve bearing. Phil. Mag. [7] 15, 113–130 (1933).MATHGoogle Scholar
  14. Sato, Y.: Dynamic behavior of a very flexible membrane rotating on a gas film next to a wall. Acta Meehan ca 55, 95 —104 (1985).Google Scholar
  15. Smith, D. M.: The motion of a rotor carried by a flexible shaft in flexible bearings. Proc. Roy. Soc. (London) A142, 92–118 (1933).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1992

Authors and Affiliations

  • H. Hosaka
    • 1
  • S. H. Crandall
    • 2
  1. 1.TokyoJapan
  2. 2.Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations