Some advances in boundary integral methods for wave-scattering from cracks

  • Guna Krishnasamy
  • Frank J. Rizzo
  • Yijun Liu
Conference paper
Part of the Acta Mechanica book series (ACTA MECH.SUPP., volume 3)


This paper deals with some recent and ongoing research involving scattering of time-harmonic acoustic and elastic waves from cracks and cracklike thin scatterers. The character and treatment of the singular integral equations involved in the formulation and solution of such problems are discussed and a number of numerical examples are presented.


Boundary Element Method Singular Integral Equation Boundary Integral Equation Crack Problem Scattered Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Martin, P. A., Rizzo, F. J.: On boundary integral equations for crack problems. Proc. Roy. Soc. A 421, 341–355 (1989).MathSciNetADSCrossRefMATHGoogle Scholar
  2. [2]
    Rudolphi, T. J., Krishnasamy, G., Schmerr, L. W., Rizzo, F. J.: On the use of strongly singular integral equations for crack problems. Boundary elements 10 (C. A. Brebbia, ed.), Southampton, England: Springer-Verlag and Computational Mechanics Publications. Sept. 1988.Google Scholar
  3. [3]
    Jaswon, M. A.: Integral equations methods in potential theory. Proc. Royal. Soc. A 275, 23–32 (1963).MathSciNetADSCrossRefMATHGoogle Scholar
  4. [4]
    Banerjee, P. K., Butterfield, P. K.: Boundary element method in engineering. McGraw-Hill 1981.Google Scholar
  5. [5]
    Mukherjce, S.: Boundary element method in creep and fracture. New York: Applied Sciences Publishers 1982.Google Scholar
  6. [6]
    Cruse, T. A.: Boundary element analysis in computational fracture mechanics. Boston: Kluwer Academic Publishers 1988.CrossRefMATHGoogle Scholar
  7. [7]
    Hartmann, F.: Introduction to boundary element theory and applications. New York: Springer 1989.CrossRefGoogle Scholar
  8. [8]
    Schenck, H. A.: Improved integral formulation for acoustic radiation problems. J. Acoust. Soc. Am. 44, 41–58 (1968).ADSCrossRefGoogle Scholar
  9. [9]
    Kleinman, R. E., Roach, G. F.: Boundary integral equations for the three-dimensional Helmholtz equation. SIAM Rev. 16, 214–236 (1974).MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    Liu, Y. J., Rizzo, F. J.: A weakly-singular form of the hypersingular boundary integral equation applied to 3-D acoustic wave problems. Computer methods in applied mechanics and engineering. To appear.Google Scholar
  11. [11]
    Takakuda, K., Koizumi, T., Shibuya, T.: On integral equation methods for crack problems. Bull. J.S.M.E. 28, 236 (1985).MathSciNetGoogle Scholar
  12. [12]
    Nishimura, N., Kobayashi, S.: An improved boundary integral equation method for crack problems. Proc. IUTAM Symposium, San Antonio, Texas, USA, April 13–16, 1987. (T. A. Cruse, ed.), Adv. Boundary Element Method. Berlin — Heidelberg — New York — Tokyo: Springer 1987.Google Scholar
  13. [13]
    Lin, W., Keer, L. M.: Scattering by a planar three-dimensional crack. J. Acoust. Soc. Am. 82 (4), 1442–1448 (1987).ADSCrossRefGoogle Scholar
  14. [14]
    Budreck, D. E., Achenbach, J. D.: Scattering from three-dimensional planar cracks by the boundary integral equation method. J. Appl. Mech. 55, 405–411 (1988).ADSCrossRefMATHGoogle Scholar
  15. [15]
    Krishnasamy, G., Schmerr, L. W., Rudolphi, T. J., Rizzo, F. J.: Hypersingular boundary integral equations: Some applications in acoustic and elastic wave scattering. J. Appl. Mech. 57, 404–411 (1990).MathSciNetCrossRefGoogle Scholar
  16. [16]
    Gray, L. J., Martha, L. E, Ingraffea, A. R.: Hypersingular integrals in boundary element fracture analysis. Int. J. of Num. Meth. in Engg. 29, 1135–1158 (1990).MathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    Muskhelishvili, N. I.: Singular integral equations. Nordhoff: The Netherlands 1953.MATHGoogle Scholar
  18. [18]
    Hadamard, J.: Lectures on cauchy’s problem in linear partial differential equations. New Haven, Conn.: Yale Univ. Press 1923.MATHGoogle Scholar
  19. [19]
    Kutt, H. R.: The numerical evaluation of principal value integrals by finite-part integration. Numer. Math. 24, 20–210 (1975).MathSciNetCrossRefGoogle Scholar
  20. [20]
    Brando, M. P.: Improper integrals in theoretical aerodynamics: The problem revisited. AIAA J. 25 (9), 1258–1260 (1986).ADSCrossRefGoogle Scholar
  21. [21]
    Kaya, A. C., Erdogan, E: On the solution of integral equations with strongly singular kernels. Q. Appl. Math. 57, 404–414 (1987).Google Scholar
  22. [22]
    loakimidis, N. I.: A new singular integral equation for the classical crack problem in plane and antiplane elasticity. Int. J. Fracture 21, 115–122 (1983).CrossRefGoogle Scholar
  23. [23]
    Guiggiani, M., Gigante, A.: A general algorithm for multidimensional cauchy principal value integrals in the boundary element method. J. Appl. Mech. 57, 906–915 (1990).MathSciNetADSCrossRefMATHGoogle Scholar
  24. [24]
    Ervin, V. J., Kieser, R., Wendland, W. L.: Numerical approximation of the solution for a model 2-D hypersingular integral equation. Computational engineering with boundary elements, Vol. 1 ( S. Gilli, C. A. Brebbia, A. H. D. Cheng, eds.), Computational Mechanics Publications, Southampton 1990.Google Scholar
  25. [25]
    Guiggiani, M., Krishnasamy, G., Rudolphi, T. J., Rizzo, F. J.: A general algorithm for the numerical solution of hypersingular boundary integral equations. J. Appl. Mech., to appear.Google Scholar
  26. [26]
    Schwab, C., Wendland, W. L.: Numerical integration of singular and hypersingular integrals in boundary element methods. Numerische Mathematik, in review.Google Scholar
  27. [27]
    Filippi, P. J. T.: Layer potentials and acoustic diffraction. J. Sound Vibr. 54 (4), 473–500 (1977).MathSciNetADSCrossRefMATHGoogle Scholar
  28. [28]
    Nedelec, J. C.: Integral equations with non integrable kernels. Integral Eq. Operator Th. 5, 562–572 (1982).MathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    Chien, C. C., Rajiyah, H., Atluri, S. N.: An effective method for solving the hypersingular integral equation in 3-D acoustics. J. Acoust. Soc. Am. 88 (2), 918–936 (1990).MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    Sladek, V., Sladek, J., Balas, J.: Boundary integral formulation of crack problems. Z. Angew. Math. Mech. 66 (2), 83–94 (1986).CrossRefMATHGoogle Scholar
  31. [31]
    Bonnet, M.: Regular boundary integral equations for three-dimensional finite or infinite bodies with and without curved cracks in elastodynamics. Boundary element techniques: Applications in engineering, Brebbia, C. A. and Zamani, N. (eds.). Computational Mechanics Publications, Southampton 1989.Google Scholar
  32. [32]
    Rudolphi, T J.: The use of simple solutions in the regularization of hypersingular boundary integral equations. Math. Comput. Modelling 15 (3–5), 269–278 (1991).MathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    Krishnasamy, G., Rizzo, F. J., Rudolphi, T J.: Hypersingular boundary integral equations: Their occurrence, interpretation, regularization and computation. To appear in developments in boundary element methods, Vol. 7, Advanced Dynamic Analysis, Elsevier Applied Science Pub.Google Scholar
  34. [34]
    Krishnaamy, G., Rizzo, F. J., Rudolphi, T. J.: Continuity requirements for density functions in the boundary integral equation method. Computational Mechanics, 9, 267–284 (1992).MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    Krishnasamy, G., Rizzo, F. J., Liu, Y. J.: Boundary integral equation formulation for thin body problems. In preparation.Google Scholar
  36. [36]
    Krishnasamy, G., Rizzo, E J., Liu, Y.: Scattering of acoustic and elastic wave scattering by crack like objects: The role of hypersingular integrals. Review of progress in quantitative nondestructive evaluation (Thompson, D. O., Chimenti, D. E., eds.), Vol. 18. Maine: Plenum Press, Aug. 1991.Google Scholar
  37. [37]
    Schuster, G. T: A hybrid BIE + Born series modeling scheme: Generalized Born series. J. Acoust. Soc. Am. 77, 865–886 (1985).MathSciNetADSCrossRefMATHGoogle Scholar
  38. [38]
    Kitahara, M., Nakagawa, K.: Born series approach applied to three dimensional elastodynamic inclusion analysis by BIE methods. Proc. Fourth Japan Nat. Symp. on Bound. Elem. Meth., Japan. Soc. Comp. Meth. Engr., Tokyo (1987).Google Scholar
  39. [39]
    Schafbuch, P. J., Rizzo, F. J., Thompson, R. B.: Elastic wave scattering by multiple inclusions. Proc. ASME Symp. on Enhancing Analysis Techniques for Composite Materials, Winter Annual Meeting, Atlanta, Dec. 1991.Google Scholar
  40. [40]
    Nishimura, N., Kobayashi, S.: Further applications of regularised integral equations in crack problems. Symp. of the Int. Ass. for Boundary Element Method, Rome, Italy, Oct. 1990.Google Scholar
  41. [41]
    Kitahara, M., Nakagawa, K.: Phase shift determination of scattered far-fields and its application to an inverse problem. Review of progress in quantitative nondestructive evaluation (Thompson, D. O., Chimenti, D. E., eds.), Vol. 18. Maine: Plenum Press, Aug. 1991.Google Scholar

Copyright information

© Springer-Verlag Wien 1992

Authors and Affiliations

  • Guna Krishnasamy
    • 1
    • 2
  • Frank J. Rizzo
    • 1
    • 4
  • Yijun Liu
    • 1
    • 3
  1. 1.ChampaignUSA
  2. 2.PDA EngineeringCosta MesaUSA
  3. 3.Dept. of Theoretical and Applied MechanicsUniversity of IllinoisUrbanaUSA
  4. 4.Department of Aerospace Enginering and Engineering MechanicsIowa State UniversityAmesUSA

Personalised recommendations