Advertisement

Dynamic analysis of column and borehole problems in soils and rocks

  • D. E. Beskos
  • I. Vgenopoulou
Conference paper
Part of the Acta Mechanica book series (ACTA MECH.SUPP., volume 3)

Summary

The one-dimensional dynamic column and borehole problems of soil and rock mechanics are solved analytically-numerically. The poroelastic soil medium obeys the Vardoulakis-Beskos theory, while the poroelastic, fissured rock medium the Aifantis-Beskos theory. The quasi-static counterparts of these problems are analysed as special cases of the dynamic ones. Use of Laplace transform with respect to time reduces the column and borehole problems to ordinary differential equations with constant and variable coefficients, respectively. The transformed solution of these problems is obtained analytically for the column and by finite differences for the borehole problem and after a numerical Laplace transform inversion, produces the time domain response. Viscoelastic material behavior of the solid skeleton is easily treated in the transformed domain with the aid of the correspondence principle. Both a suddenly applied and a harmonically varying with time load are considered. Numerical results are presented in order to assess the significance of various dynamic and material parameters on the response.

Keywords

Saturated Porous Medium Correspondence Principle Double Porosity Rock Model Time Domain Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Biot, M. A.: Theory of propagation of elastic waves in a fluid-saturated porous solid. I. low-frequency range. J. Acoust. Soc. Am. 28, 168 —178 (1956).MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    Bowen, R. M.: Theory of mixtures. In: Continuum physics Vol. III (Eringen, A. C., ed.), pp. 1–127. New York: Academic Press 1976.Google Scholar
  3. [3]
    Corapcioglu, M. Y.: Wave propagation in porous media — a review. In: Transport processes in porous media (Bear, J., Corapcioglu, M. Y., eds.), pp. 373 —469. Dordrecht: Kluwer Academic Publishers 1991.Google Scholar
  4. [4]
    Vgenopoulou, I., Beskos, D. E.: Dynamic poroelastic soil column and borehole problem analysis. Soil Dynamics and Earthquake Engineering (to appear).Google Scholar
  5. [5]
    Vgenopoulou, I., Beskos, D. E.: Dynamics of saturated rocks. IV: column and borehole problems. J. Eng. Mech., ASCE (to appear).Google Scholar
  6. [6]
    Vgenopoulou, I., Beskos, D. E.: Dynamic behavior of saturated poroviscoelastic media. Acta Mechanica (to appear).Google Scholar
  7. [7]
    Vardoulakis, I., Beskos, D. E.: Dynamic behavior of nearly saturated porous media. Mechanics of Materials 5, 87–108 (1986).CrossRefGoogle Scholar
  8. [8]
    Aifantis, E. C.: On the problem of diffusion in solids. Acta Mechanica 37, 265–296 (1980).MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    Verruijt, A.: Elastic storage of aquifers. In: Flow through porous media (De Wiest, R. J. M., ed.), pp. 331— 376. New York: Academic Press 1969.Google Scholar
  10. [10]
    Verruijt, A.: The theory of consolidation. In: Fundamentals of transport phenomena in porous media (Bear, J., Corapcioglou, M. Y., eds.), pp. 349–368. Dordrecht: Martinus Nijhoff Publishers 1984.Google Scholar
  11. [11]
    Garg, S. K., Nayfeh, A. H., Good, A. J.: Compressional waves in fluid-saturated elastic porous media. J. Appl. Phys. 45, 1968–1974 (1974).ADSCrossRefGoogle Scholar
  12. [12]
    Bowen, R. M., Lockett, R. R.: Inertial effects in poroelasticity. J. Appl. Mech. 50, 334–342 (1983).ADSCrossRefMATHGoogle Scholar
  13. [13]
    Zienkiewicz, O. C., Chang, C. T., Bettess, P.: Drained, undrained, consolidating and dynamic behavior assumptions in soils. Geotechnique 30, 385 — 395 (1980).Google Scholar
  14. [14]
    Simon, B. R., Zienkiewicz, O. C., Paul, D. K.: An analytical solution for the transient response of saturated porous elastic solids. International Journal for Numerical and Analytical Methods in Geomechanics 8, 381— 398 (1984).Google Scholar
  15. [15]
    Hiremath, M. S., Sandhu, R. S., Morland, L. W., Wolfe, W. E.: Analysis of one-dimensional wave propagation in a fluid-saturated finite soil column. International Journal for Numerical and Analytical Methods in Geomechanics 12, 121–139 (1988).ADSCrossRefMATHGoogle Scholar
  16. [16]
    Ghaboussi, J., Wilson, E. L.: Variational formulation of dynamics of fluid-saturated porous elastic solids. J. Eng. Mech. Div., ASCE 98, 947–963 (1972).Google Scholar
  17. [17]
    Prevost, J. H.: Nonlinear transient phenomena in saturated porous media. Computer Methods in Applied Mechanics and Engineering 30, 3 —18 (1982).ADSCrossRefMATHGoogle Scholar
  18. [18]
    Prevost, J. H.: Wave propagation in fluid-saturated porous media: an efficient finite element procedure. Soil Dynamics and Earthquake Engineering 4, 183–202 (1985).CrossRefGoogle Scholar
  19. [19]
    Zienkiewicz, O. C., Shiomi, T.: Dynamic behavior of saturated porous media: the generalized Biot formulation and its numerical solution. International Journal for Numerical and Analytical Methods in Geomechanics 8, 71–96 (1984).ADSCrossRefMATHGoogle Scholar
  20. [20]
    Simon, B. R., Wu, J. S. S., Zienkiewicz, O. C., Paul, D. K.: Evaluation od u — w and u — a finite element methods for the dynamic response of saturated porous media using one-dimensional models. International Journal for Numerical and Analytical Methods in Geomechanics 10, 461–482 (1986).ADSCrossRefMATHGoogle Scholar
  21. [21]
    Simon, B. R., Wu, J. S. S., Zienkiewicz, O. C.: Evaluation of higher order, mixed and hermitean finite element procedures for dynamic analysis of saturated porous media using one-dimensional models. International Journal for Numerical and Analytical Methods in Geomechanics 10, 483–499 (1986).ADSCrossRefMATHGoogle Scholar
  22. [22]
    Cheng, A. H. D., Badmus, T., Beskos, D. E.: Integral equation for dynamic poroelasticity in frequency domain with boundary element solution. J. Eng. Mech. ASCE 117, 1136–1157 (1991).CrossRefGoogle Scholar
  23. [23]
    Chang, S. K., Liu, H. L., Johnson, D. L.: Low-frequency tube waves in permeable rocks. Geophysics 53, 519–527 (1988).ADSCrossRefGoogle Scholar
  24. [24]
    Liu, H. L.: Borehole modes in a cylindrical fluid-saturated permeable medium. J. Acoust. Soc. Am. 84, 424–431 (1988).ADSCrossRefGoogle Scholar
  25. [25]
    Beskos, D. E.: Dynamics of saturated rocks. I: equations of motion. J. Eng. Mech. ASCE 115, 982 — 995 (1989).Google Scholar
  26. [26]
    Beskos, D. E., Vgenopoulou, I., Providakis, C. P.: Dynamics of saturated rocks. II: body waves. J. Eng. Mech. ASCE 115, 996–1016 (1989).CrossRefGoogle Scholar
  27. [27]
    Beskos, D. E., Papadakis, C. N., Woo, H. S.: Dynamics of saturated rocks. III: Rayleigh waves. J. Eng. Mech. ASCE 115, 1017–1034 (1989).CrossRefGoogle Scholar
  28. [28]
    Wilson, R. K., Aifantis, E. C.: On the theory of consolidation with double porosity — I. International Journal of Engineering Science 20, 1009–1035 (1982).CrossRefMATHGoogle Scholar
  29. [29]
    Beskos, D. E., Aifantis, E. C.: On the theory of consolidation with double porosity — II. International Journal of Engineering Science 24, 1697–1716 (1986).MathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    Khaled, M. Y, Beskos, D. E., Aifantis, E. C.: On the theory of consolidation with double porosity — III: a finite element formulation. International Journal for Numerical and Analytical Methods in Geomechanics 8, 101–123 (1984).ADSCrossRefMATHGoogle Scholar
  31. [31]
    Ohnishi, Y., Shiota, T., Kobayashi, A.: Finite element double — porosity model for deformable saturated — unsaturated fractured rock mass. In: Numerical methods in geomechanics Innsbruck 1988 (Swoboda, G., ed.), pp. 765–775. Rotterdam: A. A. Balkema 1988.Google Scholar
  32. [32]
    Valliappan, S., Khalili-Naghadeh, N.: Flow through fissured porous media with deformable matrix. International Journal for Numerical Methods in Engineering 29, 1079–1094 (1990).ADSCrossRefGoogle Scholar
  33. [33]
    Biot, M. A.: Theory of deformation of a porous viscoelastic anisotropic solid. J. Appl. Phys. 27,459 —467 (1956).MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    Tabaddor, E, Little, R. W.: Constitutive equations for mixtures of Newtonian fluids and viscoelastic solids. Developments in Mechanics 6, 459–469 (1971).Google Scholar
  35. [35]
    Podstrigach, Y. S., Pavlina, V. S.: Diffusive processes in a viscoelastic deformed layer. Fizikokhimicheskaya Mekhanika Materialov 13, 76–81 (1977).Google Scholar
  36. [36]
    Predeleanu, M.: Boundary integral method for porous media. In: Boundary element methods (Brebbia, C. A., ed.), pp. 325 — 334. Berlin: Springer 1981.Google Scholar
  37. [37]
    Dziecielak, R.: Propagation of acceleration waves in a fluid-saturated porous viscoelastic solid. Studia Geotechnica et Mechanica 2, 13–23 (1980).Google Scholar
  38. [38]
    Taylor, P. A., Aifantis, E. C.: On the theory of diffusion in linear viscoelastic media. Acta Mechanica 44, 259 — 298 (1982).Google Scholar
  39. [39]
    Durbin, F.: Numerical inversion of Laplace transform: an efficient improvement to Dubner and Abate’s method. The Computer Journal 17, 371–376 (1974).MathSciNetCrossRefMATHGoogle Scholar
  40. [40]
    Narayanan, G. V., Beskos, D. E.: Numerical operational methods for time-dependent linear problems. International Journal for Numerical Methods in Engineering 18, 1829–1854 (1982).MathSciNetADSCrossRefMATHGoogle Scholar
  41. [41]
    Biot, M. A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941).ADSCrossRefMATHGoogle Scholar
  42. [42]
    von Rosenberg, D. U.: Methods for the numerical solution of partial differential equations. New York: American Elsevier 1969.MATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 1992

Authors and Affiliations

  • D. E. Beskos
    • 1
  • I. Vgenopoulou
    • 2
  1. 1.Department of Civil EngineeringUniversity of PatrasPatrasGreece
  2. 2.PatrasGreece

Personalised recommendations