Skip to main content

Festwertspeicher-Schaltkreise (ROM)

  • Chapter
Mikroelektronische Speicher

Zusammenfassung

In diesem Kapitel werden die ROM-Typen vorgestellt und behandelt. Nach einem einleitenden Abschnitt zu den allgemeinen Eigenschaften und zur Klassifizierung werden in den folgenden Abschnitten die verschiedenen Typen in der (auch historisch so gewachsenen) Reihenfolge zunehmender Flexibilität der Anwendung, d.h. von den maskenprogrammierten echten Festwertspeichern (ROM) über die programmierbaren Typen (PROM, EPROM) und die Halbfestwertspeicher (EEPROM) bis zu den nichtflüchtigen RAM behandelt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. Rhein, D.: Speicherbausteine. In: Taschenbuch Elektrotechnik (Hrsg. E. Philippow), Band 3. Verlag Technik: Berlin 1985.

    Google Scholar 

  2. Timm, V.: Im Blickpunkt: ROM’s, PROM’s und PLA’s. Elektronik 25(1976)5, S. 38–47.

    Google Scholar 

  3. Scherpenberg, F.A.; Sheppard, D.: Asynchronous circuits accelerate access to 256K read-only memory. Electronics 55(1982)June2, S.141–145.

    Google Scholar 

  4. Davis, H.L.: A 70ns word-wide 1Mbit ROM with on-chip error-correction circuit. IEEE J. Solid-State Circ. 20(1985)5, S.958–963.

    Article  Google Scholar 

  5. Fong, E. u.a.: A high performance 256K (512K) static ROM. IEEE J. Solid-State Circ. 18(1983)6, S. 807–810.

    Article  Google Scholar 

  6. Cuppens, R.; Sevat, L.M.M.: A 256kbit ROM with serial cell structure. IEEE J. Solid-State Circ. 18(1983)3, S. 340–344.

    Article  Google Scholar 

  7. Kamuro, S.; Masaki, Y. u.a.: A 256K ROM fabricated using n-well CMOS process technology. IEEE J. Solid-State Circ. 17(1982)4, S.723–726.

    Article  Google Scholar 

  8. Rich, D.A. u.a.: A four-state ROM using multilevel process technology. IEEE J. Solid-State Circ. 19(1984)2, S. 174–179.

    Article  Google Scholar 

  9. Donoghue. B. u.a.: A 256K HCMOS ROM using a four-state cell approach. IEEE J. Solid-State Circ. 20 (1985) 2, S. 598–602.

    Article  Google Scholar 

  10. Metzger, L.R.: A 16K CMOS PROM with polysilicon fusible links. IEEE J. Solid-State Circ. 18(1983)5, S. 562–567.

    Article  Google Scholar 

  11. Fukushima, T. u.a.: A 40ns 64kbit junction shorting PROM. IEEE J. Solid-State Circ. 19(1984)2, S.187–194.

    Article  Google Scholar 

  12. Fukushima, T. u.a.: A 15ns 8kbit junction-shorting registered PROM. IEEE J. Solid-State Circ. 21(1986)5, S. 861–868.

    Article  Google Scholar 

  13. Tanimoto. M. u.a.: A novel 14V programmable 4kbit MOS-PROM using a poly-Si resistor applicable to on-chip programmable devices. IEEE J. Solid-State Circ. 17(1982)1, S. 62–68.

    Article  MathSciNet  Google Scholar 

  14. Frohmann-Bentchkowsky, D.: A fully-decoded 2048bit electrically programmable MOS-ROM. ISSCC Dig. Tech. Papers, Febr. 1971, S. 80-81.

    Google Scholar 

  15. Salsbury. P.J.; Morgan, W.L. u.a.: High-performance MOS EPROM’s using a stacked-gate cell. Dig. Tech. Papers, 1977 IEEE Int. Solid-State Circ. Conf., S. 186-187.

    Google Scholar 

  16. Kanauchi. S.; Ichida. K. u.a.: A high-performance IMbit EPROM. IEEE J. Solid-State Circ. 19(1984)5, S. 646–650.

    Article  Google Scholar 

  17. McCrcary. J.L. u.a.: Techniques for a 5V-only 64K EPROM based upon substrate hot-electron injection. IEEE J. Solid-State Circ. 19(1984)1, S. 135–143.

    Article  Google Scholar 

  18. Atsumi. S.; Tanaka. S. u.a.: Fast programmable 256K read-only memory with on-chip test circuits. IEEE J. Solid-State Circ. 20(1985)1, S. 422–427.

    Article  Google Scholar 

  19. Ali. S.B.; Sani, B. u.a.: A 50ns 256K CMOS split-gate EPROM. IEEE J. Solid-State Circ. 23(1988)1, S. 79–84.

    Article  Google Scholar 

  20. Wrenzitzki. J.: EPROM’s hoher Speicherkapazität. Mikroprozessortechnik 2(1988)11, S. 329–331.

    Google Scholar 

  21. Ohtsuka. N.; Tanaka, S. u.a.: A 4Mbit CMOS EPROM. IEEE J. Solid-State Circ. 22(1987)5, S.669–675.

    Article  Google Scholar 

  22. Gastaldi, R. u.a.: A 1Mbit CMOS EPROM with enhanced verification. IEEE J. Solid-State Circ. 23(1988)5, S. 1150–1156.

    Article  MathSciNet  Google Scholar 

  23. Knecht, M.W. u.a.: A high-speed ultra-low power 64K CMOS EPROM with on-chip test functions. IEEE J. Solid-State Circ. 18(1983)5, S. 554–561.

    Article  Google Scholar 

  24. Yoshida. M. u.a.: A 288K CMOS EPROM with redundancy. IEEE J. Solid-State Circ. 18(1983)5, S. 544–550.

    Article  Google Scholar 

  25. Chitry, P.; Schramm, M.: Intelligentes Programmieren moderner EPROM’s. radio-fernsehen-elektronik 36(1987)8, S.498–499.

    Google Scholar 

  26. Yatsuda, Y. u.a.: Hi-CMOSII technology for a 64kbit byte-erasable 5V-only EEPROM. IEEE J. Solid-State Circ. 20(1985)1, S.144–151.

    Article  Google Scholar 

  27. Hagiwara, T.; Rondo, R. u.a.: A 16Kb electrically erasable programmable ROM. ISSCC Dig. Tech. Papers 1979, S. 50-51.

    Google Scholar 

  28. Chitry, P.; Kanter, M.: EEPROM’s. radio-fernsehen-elektronik 36(1987)5, S. 296–297.

    Google Scholar 

  29. Tarui, Y. u.a.: Electrically reprogrammable nonvolatile semiconductor memory. IEEE J. Solid-State Circ. 7(1972), S. 369.

    Article  Google Scholar 

  30. Iizuka, H. u.a.: Electrically alterable avalanche-injection-type MOS read-only memory with stacked-gate structure. IEEE J. Solid-State Circ. 23(1976)4, S. 379.

    Google Scholar 

  31. Müller, R.; Nietzsch. H. u.a.: An 8192bit EAROM employing a one-transistor cell with floating gate. IEEE J. Solid-State Circ. 12(1977)5, S. 507.

    Article  Google Scholar 

  32. Lenzlinger, M. Snow, E.M.: Fowler-Nordheim-tunneling into thermally grown SiO2. J. Appl. Phys. 40(1969)1, S. 278–283.

    Article  Google Scholar 

  33. Yaron, G. u.a.: A 16K EEPROM employing new array architecture and designed-in reliability features. IEEE J. Solid-State Circ. 17(1982)5, S.833–840.

    Article  Google Scholar 

  34. Cioaca, D. u.a.: A million-cycle CMOS 256K EEPROM. IEEE J. Solid-State Circ. 22(1987)5, S. 684–692.

    Article  Google Scholar 

  35. Oto, D.H.; Dham, V.K. u.a.: High-voltage regulation on process considerations for high-density 5V-only EEPROM’s. IEEE J. Solid-State Circ. 18(1983)5, S. 532–538.

    Article  Google Scholar 

  36. Ting, T.J.; Chang, T. u.a.: A 50ns CMOS 256K EEPROM. IEEE J. Solid-State Circ. 23(1988)5, S.1164–1170.

    Article  Google Scholar 

  37. Gongwer, G.; Gudger, K.H.: A 16K EEPROM using E2-element redundancy. IEEE J. Solid-State Circ. 18(1983)5, S. 550–553.

    Article  Google Scholar 

  38. Momodomi, M.; Itoh, Y. u.a.: An experimental 4Mbit CMOS EEPROM with a NAND-structured cell. IEEE J. Solid-State Circ. 24(1989)5, S. 1238–1243.

    Article  Google Scholar 

  39. Samachisa, G. u.a.: A 128K flash EEPROM using double-polysilicon technology. IEEE J. Solid-State Circ. 22(1987)5, S.676–683.

    Article  Google Scholar 

  40. Masuoka, F. u.a.: A 256K flash EEPROM using triple-polysilicon technology. IEEE J. Solid-State Circ. 22(1987)4, S.548–552.

    Article  Google Scholar 

  41. Kynett, V.N.; Baker, A. u.a.: An in-system reprogrammable 32K x 8 CMOS flash memory. IEEE J. Solid-State Circ. 23(1988)5, S. 1157–1163.

    Article  Google Scholar 

  42. Becker, N.J. u.a.: A 5V-only 4K nonvolatile static RAM. ISSCC Dig. Tech. Papers, Febr. 1983, S. 170-171.

    Google Scholar 

  43. Lee. D.J. u.a.: Control logic and cell design for a 4K NVRAM. IEEE J. Solid-State Circ. 18(1983)5, S.525–532.

    Article  Google Scholar 

  44. Donaldson, D.D. u.a.: SNOS 1Kx8 static nonvolatile RAM. IEEE J. Solid-State Circ. 17(1982)5, S. 847–851.

    Article  Google Scholar 

  45. Terarda, Y.; Kohayashi, K. u.a.: A new architecture for the NVRAM — An EEPROM backed-up dynamic RAM. IEEE J. Solid-State Circ. 23(1988)1, S. 86–90.

    Article  Google Scholar 

  46. Evans, J.T.; Womack. R.: An experimental 512bit nonvolatile memory with ferroelectric storage cell. IEEE J. Solid-State Circ. 23(1988)5, S. 1171–1175.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag/Wien

About this chapter

Cite this chapter

Rhein, D., Freitag, H. (1992). Festwertspeicher-Schaltkreise (ROM). In: Mikroelektronische Speicher. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9214-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9214-6_5

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82354-5

  • Online ISBN: 978-3-7091-9214-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics