Skip to main content

The catecholaminergic innervation of primate prefrontal cortex

  • Conference paper
Book cover Advances in Neuroscience and Schizophrenia

Part of the book series: Journal of Neural Transmission ((NEURAL SUPPL,volume 36))

Summary

This paper reviews recent studies indicating that the marked expansion and differentiation of the prefrontal cortex in primates is associated with an increase in the complexity of both the regional density and laminar distribution of catecholaminergic afferents. The innervation patterns of these systems in monkey prefrontal cortex appear to accurately predict those in human prefrontal cortex, suggesting that studies in nonhuman primates may be reasonably used to generate hypotheses about the nature of involvement of these systems in disorders such as schizophrenia. In addition, the distinctive developmental pattern of the dopaminergic innervation of primate prefrontal cortex and the possibility of an intrinsic catecholaminergic innervation of primate prefrontal cortex may reveal new avenues of investigation into the roles of prefrontal catecholamines in both normal and pathological states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acheson AL, Kapatos G, Zigmond MJ (1981) The effects of phosphorylating conditions on tyrosine hydroxylase activity are influenced by assay conditions and brain region. Life Sci 28: 1407–1420

    Article  PubMed  CAS  Google Scholar 

  • Berger B, Verney C, Gaspar P, Febvret A (1985) Transient expression of tyrosine hydroxylase immunoreactivity in some neurons of the rat neocortex during postnatal development. Dev Brain Res 23: 141–144

    Article  CAS  Google Scholar 

  • Berger B, Trottier S, Verney C, Gaspar P, Alvarez C (1988) Regional and laminar distribution of the dopamine and serotonin innervation in the macaque cerebral cortex: a radioautographic study. J Comp Neurol 273: 99–119

    Article  PubMed  CAS  Google Scholar 

  • Berger B, Gaspar P, Verney C (1991) Dopaminergic innervation of the cerebral cortex: unexpected differences between rodents and primates. TINS 14: 21–27

    PubMed  CAS  Google Scholar 

  • Bjorklund A, Divac I, Lindvall O (1978) Regional distribution of catecholamines in monkey cerebral cortex, evidence for a dopaminergic innervation of the primate prefrontal cortex. Neurosci Lett 7: 115–119

    Article  PubMed  CAS  Google Scholar 

  • Bras H, Cavallari P, Jankowska E (1988) An investigation of local actions of ionophoretically applied DOPA in the spinal cord. Exp Brain Res 71: 447–449

    Article  PubMed  CAS  Google Scholar 

  • Brown RM, Crane AM, Goldman PS (1979) Regional distribution of monoamines in the cerebral cortex and subcortical structures of the rhesus monkey: concentrations and in vivo synthesis rates. Brain Res 168: 133–150

    Article  PubMed  CAS  Google Scholar 

  • Brozoski TJ, Brown RM, Rosvold HE, Goldman PS (1979) Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkeys. Science 205: 929–932

    Article  PubMed  CAS  Google Scholar 

  • Burke WJ, Hanson DM, Chung HD (1986) A highly sensitive assay for phenylethanolamine N-methyltransferase in human brain. Proc Soc Exp Biol Med 181: 66–70

    PubMed  CAS  Google Scholar 

  • Campbell MJ, Lewis DA, Foote SL, Morrison JH (1987) The distribution of choline acetyltransferase-, serotonin-, dopamine-beta-hydroxylase-, and tyrosine hydroxylase-immunoreactive fibers in monkey primary auditory cortex. J Comp Neurol 261: 209–220

    Article  PubMed  CAS  Google Scholar 

  • Cazzullo CL, Vita A, Sacchetti E (1989) Cerebral vertricular enlargement in schizophrenia: prevalence and correlates. In: Schultz SC, Tamminga CA (eds) Schizophrenia: scientific progress. Oxford University Press, New York, pp 195–206

    Google Scholar 

  • Coker III GT, Studelska D, Harmon S, Burke W, O’Malley KL (1990) Analysis of tyrosine hydroxylase and insulin transcripts in human neuroendocrine tissues. Mol Brain Res 8: 93–98

    Article  PubMed  CAS  Google Scholar 

  • Emson PC, Koob GF (1978) The origin and distribution of dopamine-containing afferents to the rat frontal cortex. Brain Res 142: 249–267

    Article  PubMed  CAS  Google Scholar 

  • Fuster JM (1989) The prefrontal cortex: anatomy, physiology and neuropsychology of the frontal lobe, 2nd edn. Raven Press, New York

    Google Scholar 

  • Gaspar P, Berger B, Febvret A, Vigny A, Krieger-Poulet M, Borri-Voltattorni C (1987) Tyrosine hydroxylase-immunoreactive neurons in the human cerebral cortex: a novel catecholaminergic group? Neurosci Lett 80: 257–262

    Article  PubMed  CAS  Google Scholar 

  • Gaspar P, Berger B, Febvret A, Vigny A, Henry JP (1989) Catecholamine innvervation of the human cerebral cortex as revealed by comparative immunohistochemistry of tyrosine hydroxylase and dopamine-beta-hydroxylase. J Comp Neurol 279: 249–271

    Article  PubMed  CAS  Google Scholar 

  • Goldman-Rakic PS (1987a) Circuitry of primate prefrontal cortex and regulation of behavior by representational memory. In: Plum F, Montcastle V (eds) Handbook of physiology — the nervous system, vol 5. American Physiological Society, Bethesda MD, pp 373–417

    Google Scholar 

  • Goldman-Rakic PS (1987b) Development of cortical circuitry and cognitive function. Child Dev 58: 601–622

    Article  PubMed  CAS  Google Scholar 

  • Goldman-Rakic PS, Brown RM (1982) Postnatal development of monoamine content and synthesis in the cerebral cortex of rhesus monkeys. Dev Brain Res 4: 339–349

    Article  CAS  Google Scholar 

  • Goldman-Rakic PS, Leranth C, Williams SM, Mons N, Geffard M (1989) Dopamine synaptic complex with pyramidal neurons in primate cerebral cortex. Proc Natl Acad Sci USA 86: 9015–9019

    Article  PubMed  CAS  Google Scholar 

  • Goshima Y, Kubo T, Misu Y (1988) Transmitter-like release of endogenous 3,4dihydroxyphenylalanine from rat striatal slices. J Neurochem 50: 1725–1730

    Article  PubMed  CAS  Google Scholar 

  • Haycock JW (1991) Four forms of tyrosine hydroxylase are present in human adrenal medulla. J Neurochem 56: 2139–2142

    Article  PubMed  CAS  Google Scholar 

  • Hokfelt T, Fuxe K, Goldstein M, Johansson O (1974) Immunohistochemical evidence for the existence of adrenaline neurons in the rat brain. Brain Res 66: 235–251

    Article  CAS  Google Scholar 

  • Hornung JP, Tork I, DeTribolet N (1989) Morphology of tyrosine hydroxylase- immunoreactive neurons in the human cerebral cortex.. Exp Brain Res 76: 12–20

    Article  PubMed  CAS  Google Scholar 

  • Jaeger CB, Ruggiero DA, Albert VR, Park DM, Joh TH, Reis DJ (1984) Aromatic 1-amino acid decarboxylase in the rat brain: immunocytochemical localization in neurons of the brain stem. Neuroscience 11: 691–713

    Article  PubMed  CAS  Google Scholar 

  • Joh TH, Reis DJ (1975) Different forms of tyrosine hydroxylase in central dopaminergic and noradrenergic neurons and sympathetic ganglia. Brain Res 85: 146–151

    Article  PubMed  CAS  Google Scholar 

  • Kohler C, Everitt BJ, Pearson J, Goldstein M (1983) Immunohistochemical evidence for a new group of catecholamine-containing neurons in the basal forebrain of the monkey. Neurosci Lett 37: 161–166

    Article  PubMed  CAS  Google Scholar 

  • Kosaka T, Hama K, Nagatsu I (1987) Tyrosine hydroxylase-immunoreactive intrinsic neurons in the rat cerebral cortex. Exp Brain Res 68: 393–405

    Article  PubMed  CAS  Google Scholar 

  • Kuljis RO, Martin-Vasallo P, Peress NS (1989) Lewy bodies in tyrosine hydroxylase- synthesizing neurons of the human cerebral cortex. Neurosci Lett 106: 49–54

    Article  PubMed  CAS  Google Scholar 

  • Levitt P, Rakic P, Goldman-Rakic P (1984) Region-specific distribution of catecholamine afferents in primate cerebral cortex: a fluorescence histochemical analysis. J Comp Neurol 227: 23–36

    Article  PubMed  CAS  Google Scholar 

  • Lewis DA, Morrison JH (1989) The noradrenergic innervation of monkey prefrontal cortex: a dopamine-beta-hydroxylase immunohistochemical study. J Comp Neurol 282: 317–330

    Article  PubMed  CAS  Google Scholar 

  • Lewis DA, Harris HW (1991) Differential laminar distribution of tyrosine hydroxylaseimmunoreactive axons in infant and adult monkey prefrontal cortex. Neurosci Lett 125: 151–154

    Article  PubMed  CAS  Google Scholar 

  • Lewis DA, Campbell MJ, Foote SL, Goldstein M, Morrison JH (1987) The distribution of tyrosine hydroxylase-immunoreactive fibers in primate neocortex is widespread but regionally specific. J Neurosci 7: 279–290

    PubMed  CAS  Google Scholar 

  • Lewis DA, Foote SL, Goldstein M, Morrison JH (1988) The dopaminergic innervation of monkey prefrontal cortex: a tyrosine hydroxylase immunohistochemical study. Brain Res 449: 225–243

    Article  PubMed  CAS  Google Scholar 

  • Lewis DA, Melchitzky DS, Gioio A, Solomon Z, Kaplan BB (1991) Neuronal localization of tyrosine hydroxylase gene products in human neocortex. Mol Cell Neurosci 2: 228–234

    Article  PubMed  CAS  Google Scholar 

  • Morrison JH, Hof PR, Janssen W, Bassett JL, Foote SL, Kraemer JW, McKinney WT (1990) Quantitative neuroanatomic analyses of cerebral cortex in rhesus monkeys from different rearing conditions. Soc Neurosci Abstr 16: 789

    Google Scholar 

  • Noack HJ, Lewis DA (1989) Antibodies directed against tyrosine hydroxylase differentially recognize noradrenergic axons in monkey neocortex. Brain Res 500: 313–324

    Article  PubMed  CAS  Google Scholar 

  • Okamura H, Kitahama K, Mons N, Ibata Y, Jouvet M, Geffard M (1988) L-DOPAimmunoreactive neurons in the rat hypothalamic tuberai region. Neurosci Lett 95: 42–46

    Article  PubMed  CAS  Google Scholar 

  • Rakic P, Bourgeois J-P, Eckenhoff MF, Zecevic N, Goldman-Rakic PS (1986) Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex. Science 232: 232–235

    Article  PubMed  CAS  Google Scholar 

  • Roberts GW, Colter N, Lofthouse R, Bogerts B, Zech M, Crow TJ (1986) Gliosis in schizophrenia: a survey. Biol Psychiatry 21: 1043–1050

    Article  PubMed  CAS  Google Scholar 

  • Samson Y, Wu JJ, Friedman AH, Davis JN (1990) Catecholaminergic innervation of the hippocampus in the cynomolgus monkey. J Comp Neurol 298: 250–263

    Article  PubMed  CAS  Google Scholar 

  • Schmidt RH, Bhatnagar RK (1979) Assessment of the effects of neonatal subcutaneous 6-hydroxydopamine on noradrenergic and dopaminergic innervation of the cerebral cortex. Brain Res 166: 309–319

    Article  PubMed  CAS  Google Scholar 

  • Seguela P, Watkins KC, Geffard M, Descarries L (1990) Noradrenaline axon terminals in adult rat neocortex: an immunocytochemical analysis in serial thin sections. Neuroscience 35: 249–264

    Article  PubMed  CAS  Google Scholar 

  • Trottier S, Geffard M, Evrard B (1989) Co-localization of tyrosine hydroxylase and GABA immunoreactivities in human cortical neurons. Neurosci Lett 106: 76–82

    Article  PubMed  CAS  Google Scholar 

  • Vincent SR (1988) Distributions of tyrosine hydroxylase-, depamine-beta-hydroxylase-, and phenylethanolamine -n-methyltransferase- immunoreactive neurons in the brain of the hamster (mesocricetus auratus). J Comp Neurol 268: 584–599

    Article  PubMed  CAS  Google Scholar 

  • Vincent SR, Hope BT (1990) Tyrosine hydroxylase containing neurons lacking aromatic amino acid decarboxylase in the hamster brain. J Comp Neurol 295: 290–298

    Article  PubMed  CAS  Google Scholar 

  • Walker AE (1940) A cytoarchitectural study of the prefrontal area of the macaque monkey. J Comp Neurol 73: 59–86

    Article  Google Scholar 

  • Weinberger DR, Berman KF, Zec RF (1986) Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia. I. Regional cerebral blood flow (rCBF) evidence. Arch Gen Psychiatry 43: 114–125

    Google Scholar 

  • Weinberger DR, Berman KF, Illowsky BP (1988) Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia. Arch Gen Psychiatry 45: 609–615

    Article  PubMed  CAS  Google Scholar 

  • Wyatt RJ (1985) The dopamine hypothesis: variations on a theme. In: Cancro R, Dean SR (eds) Research in the schizophrenic disorders. Spectrum Publications (The Stanley R. Dean Award Lectures, vol 2 ), pp 225–247

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag

About this paper

Cite this paper

Lewis, D.A. (1992). The catecholaminergic innervation of primate prefrontal cortex. In: Tuma, A.H., Stricker, E.M., Gershon, S. (eds) Advances in Neuroscience and Schizophrenia. Journal of Neural Transmission, vol 36. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9211-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9211-5_9

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82347-7

  • Online ISBN: 978-3-7091-9211-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics