The catecholaminergic innervation of primate prefrontal cortex

  • D. A. Lewis
Part of the Journal of Neural Transmission book series (NEURAL SUPPL, volume 36)


This paper reviews recent studies indicating that the marked expansion and differentiation of the prefrontal cortex in primates is associated with an increase in the complexity of both the regional density and laminar distribution of catecholaminergic afferents. The innervation patterns of these systems in monkey prefrontal cortex appear to accurately predict those in human prefrontal cortex, suggesting that studies in nonhuman primates may be reasonably used to generate hypotheses about the nature of involvement of these systems in disorders such as schizophrenia. In addition, the distinctive developmental pattern of the dopaminergic innervation of primate prefrontal cortex and the possibility of an intrinsic catecholaminergic innervation of primate prefrontal cortex may reveal new avenues of investigation into the roles of prefrontal catecholamines in both normal and pathological states.


Prefrontal Cortex Tyrosine Hydroxylase Dopaminergic Innervation Human Neocortex Laminar Pattern 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acheson AL, Kapatos G, Zigmond MJ (1981) The effects of phosphorylating conditions on tyrosine hydroxylase activity are influenced by assay conditions and brain region. Life Sci 28: 1407–1420PubMedCrossRefGoogle Scholar
  2. Berger B, Verney C, Gaspar P, Febvret A (1985) Transient expression of tyrosine hydroxylase immunoreactivity in some neurons of the rat neocortex during postnatal development. Dev Brain Res 23: 141–144CrossRefGoogle Scholar
  3. Berger B, Trottier S, Verney C, Gaspar P, Alvarez C (1988) Regional and laminar distribution of the dopamine and serotonin innervation in the macaque cerebral cortex: a radioautographic study. J Comp Neurol 273: 99–119PubMedCrossRefGoogle Scholar
  4. Berger B, Gaspar P, Verney C (1991) Dopaminergic innervation of the cerebral cortex: unexpected differences between rodents and primates. TINS 14: 21–27PubMedGoogle Scholar
  5. Bjorklund A, Divac I, Lindvall O (1978) Regional distribution of catecholamines in monkey cerebral cortex, evidence for a dopaminergic innervation of the primate prefrontal cortex. Neurosci Lett 7: 115–119PubMedCrossRefGoogle Scholar
  6. Bras H, Cavallari P, Jankowska E (1988) An investigation of local actions of ionophoretically applied DOPA in the spinal cord. Exp Brain Res 71: 447–449PubMedCrossRefGoogle Scholar
  7. Brown RM, Crane AM, Goldman PS (1979) Regional distribution of monoamines in the cerebral cortex and subcortical structures of the rhesus monkey: concentrations and in vivo synthesis rates. Brain Res 168: 133–150PubMedCrossRefGoogle Scholar
  8. Brozoski TJ, Brown RM, Rosvold HE, Goldman PS (1979) Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkeys. Science 205: 929–932PubMedCrossRefGoogle Scholar
  9. Burke WJ, Hanson DM, Chung HD (1986) A highly sensitive assay for phenylethanolamine N-methyltransferase in human brain. Proc Soc Exp Biol Med 181: 66–70PubMedGoogle Scholar
  10. Campbell MJ, Lewis DA, Foote SL, Morrison JH (1987) The distribution of choline acetyltransferase-, serotonin-, dopamine-beta-hydroxylase-, and tyrosine hydroxylase-immunoreactive fibers in monkey primary auditory cortex. J Comp Neurol 261: 209–220PubMedCrossRefGoogle Scholar
  11. Cazzullo CL, Vita A, Sacchetti E (1989) Cerebral vertricular enlargement in schizophrenia: prevalence and correlates. In: Schultz SC, Tamminga CA (eds) Schizophrenia: scientific progress. Oxford University Press, New York, pp 195–206Google Scholar
  12. Coker III GT, Studelska D, Harmon S, Burke W, O’Malley KL (1990) Analysis of tyrosine hydroxylase and insulin transcripts in human neuroendocrine tissues. Mol Brain Res 8: 93–98PubMedCrossRefGoogle Scholar
  13. Emson PC, Koob GF (1978) The origin and distribution of dopamine-containing afferents to the rat frontal cortex. Brain Res 142: 249–267PubMedCrossRefGoogle Scholar
  14. Fuster JM (1989) The prefrontal cortex: anatomy, physiology and neuropsychology of the frontal lobe, 2nd edn. Raven Press, New YorkGoogle Scholar
  15. Gaspar P, Berger B, Febvret A, Vigny A, Krieger-Poulet M, Borri-Voltattorni C (1987) Tyrosine hydroxylase-immunoreactive neurons in the human cerebral cortex: a novel catecholaminergic group? Neurosci Lett 80: 257–262PubMedCrossRefGoogle Scholar
  16. Gaspar P, Berger B, Febvret A, Vigny A, Henry JP (1989) Catecholamine innvervation of the human cerebral cortex as revealed by comparative immunohistochemistry of tyrosine hydroxylase and dopamine-beta-hydroxylase. J Comp Neurol 279: 249–271PubMedCrossRefGoogle Scholar
  17. Goldman-Rakic PS (1987a) Circuitry of primate prefrontal cortex and regulation of behavior by representational memory. In: Plum F, Montcastle V (eds) Handbook of physiology — the nervous system, vol 5. American Physiological Society, Bethesda MD, pp 373–417Google Scholar
  18. Goldman-Rakic PS (1987b) Development of cortical circuitry and cognitive function. Child Dev 58: 601–622PubMedCrossRefGoogle Scholar
  19. Goldman-Rakic PS, Brown RM (1982) Postnatal development of monoamine content and synthesis in the cerebral cortex of rhesus monkeys. Dev Brain Res 4: 339–349CrossRefGoogle Scholar
  20. Goldman-Rakic PS, Leranth C, Williams SM, Mons N, Geffard M (1989) Dopamine synaptic complex with pyramidal neurons in primate cerebral cortex. Proc Natl Acad Sci USA 86: 9015–9019PubMedCrossRefGoogle Scholar
  21. Goshima Y, Kubo T, Misu Y (1988) Transmitter-like release of endogenous 3,4dihydroxyphenylalanine from rat striatal slices. J Neurochem 50: 1725–1730PubMedCrossRefGoogle Scholar
  22. Haycock JW (1991) Four forms of tyrosine hydroxylase are present in human adrenal medulla. J Neurochem 56: 2139–2142PubMedCrossRefGoogle Scholar
  23. Hokfelt T, Fuxe K, Goldstein M, Johansson O (1974) Immunohistochemical evidence for the existence of adrenaline neurons in the rat brain. Brain Res 66: 235–251CrossRefGoogle Scholar
  24. Hornung JP, Tork I, DeTribolet N (1989) Morphology of tyrosine hydroxylase- immunoreactive neurons in the human cerebral cortex.. Exp Brain Res 76: 12–20PubMedCrossRefGoogle Scholar
  25. Jaeger CB, Ruggiero DA, Albert VR, Park DM, Joh TH, Reis DJ (1984) Aromatic 1-amino acid decarboxylase in the rat brain: immunocytochemical localization in neurons of the brain stem. Neuroscience 11: 691–713PubMedCrossRefGoogle Scholar
  26. Joh TH, Reis DJ (1975) Different forms of tyrosine hydroxylase in central dopaminergic and noradrenergic neurons and sympathetic ganglia. Brain Res 85: 146–151PubMedCrossRefGoogle Scholar
  27. Kohler C, Everitt BJ, Pearson J, Goldstein M (1983) Immunohistochemical evidence for a new group of catecholamine-containing neurons in the basal forebrain of the monkey. Neurosci Lett 37: 161–166PubMedCrossRefGoogle Scholar
  28. Kosaka T, Hama K, Nagatsu I (1987) Tyrosine hydroxylase-immunoreactive intrinsic neurons in the rat cerebral cortex. Exp Brain Res 68: 393–405PubMedCrossRefGoogle Scholar
  29. Kuljis RO, Martin-Vasallo P, Peress NS (1989) Lewy bodies in tyrosine hydroxylase- synthesizing neurons of the human cerebral cortex. Neurosci Lett 106: 49–54PubMedCrossRefGoogle Scholar
  30. Levitt P, Rakic P, Goldman-Rakic P (1984) Region-specific distribution of catecholamine afferents in primate cerebral cortex: a fluorescence histochemical analysis. J Comp Neurol 227: 23–36PubMedCrossRefGoogle Scholar
  31. Lewis DA, Morrison JH (1989) The noradrenergic innervation of monkey prefrontal cortex: a dopamine-beta-hydroxylase immunohistochemical study. J Comp Neurol 282: 317–330PubMedCrossRefGoogle Scholar
  32. Lewis DA, Harris HW (1991) Differential laminar distribution of tyrosine hydroxylaseimmunoreactive axons in infant and adult monkey prefrontal cortex. Neurosci Lett 125: 151–154PubMedCrossRefGoogle Scholar
  33. Lewis DA, Campbell MJ, Foote SL, Goldstein M, Morrison JH (1987) The distribution of tyrosine hydroxylase-immunoreactive fibers in primate neocortex is widespread but regionally specific. J Neurosci 7: 279–290PubMedGoogle Scholar
  34. Lewis DA, Foote SL, Goldstein M, Morrison JH (1988) The dopaminergic innervation of monkey prefrontal cortex: a tyrosine hydroxylase immunohistochemical study. Brain Res 449: 225–243PubMedCrossRefGoogle Scholar
  35. Lewis DA, Melchitzky DS, Gioio A, Solomon Z, Kaplan BB (1991) Neuronal localization of tyrosine hydroxylase gene products in human neocortex. Mol Cell Neurosci 2: 228–234PubMedCrossRefGoogle Scholar
  36. Morrison JH, Hof PR, Janssen W, Bassett JL, Foote SL, Kraemer JW, McKinney WT (1990) Quantitative neuroanatomic analyses of cerebral cortex in rhesus monkeys from different rearing conditions. Soc Neurosci Abstr 16: 789Google Scholar
  37. Noack HJ, Lewis DA (1989) Antibodies directed against tyrosine hydroxylase differentially recognize noradrenergic axons in monkey neocortex. Brain Res 500: 313–324PubMedCrossRefGoogle Scholar
  38. Okamura H, Kitahama K, Mons N, Ibata Y, Jouvet M, Geffard M (1988) L-DOPAimmunoreactive neurons in the rat hypothalamic tuberai region. Neurosci Lett 95: 42–46PubMedCrossRefGoogle Scholar
  39. Rakic P, Bourgeois J-P, Eckenhoff MF, Zecevic N, Goldman-Rakic PS (1986) Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex. Science 232: 232–235PubMedCrossRefGoogle Scholar
  40. Roberts GW, Colter N, Lofthouse R, Bogerts B, Zech M, Crow TJ (1986) Gliosis in schizophrenia: a survey. Biol Psychiatry 21: 1043–1050PubMedCrossRefGoogle Scholar
  41. Samson Y, Wu JJ, Friedman AH, Davis JN (1990) Catecholaminergic innervation of the hippocampus in the cynomolgus monkey. J Comp Neurol 298: 250–263PubMedCrossRefGoogle Scholar
  42. Schmidt RH, Bhatnagar RK (1979) Assessment of the effects of neonatal subcutaneous 6-hydroxydopamine on noradrenergic and dopaminergic innervation of the cerebral cortex. Brain Res 166: 309–319PubMedCrossRefGoogle Scholar
  43. Seguela P, Watkins KC, Geffard M, Descarries L (1990) Noradrenaline axon terminals in adult rat neocortex: an immunocytochemical analysis in serial thin sections. Neuroscience 35: 249–264PubMedCrossRefGoogle Scholar
  44. Trottier S, Geffard M, Evrard B (1989) Co-localization of tyrosine hydroxylase and GABA immunoreactivities in human cortical neurons. Neurosci Lett 106: 76–82PubMedCrossRefGoogle Scholar
  45. Vincent SR (1988) Distributions of tyrosine hydroxylase-, depamine-beta-hydroxylase-, and phenylethanolamine -n-methyltransferase- immunoreactive neurons in the brain of the hamster (mesocricetus auratus). J Comp Neurol 268: 584–599PubMedCrossRefGoogle Scholar
  46. Vincent SR, Hope BT (1990) Tyrosine hydroxylase containing neurons lacking aromatic amino acid decarboxylase in the hamster brain. J Comp Neurol 295: 290–298PubMedCrossRefGoogle Scholar
  47. Walker AE (1940) A cytoarchitectural study of the prefrontal area of the macaque monkey. J Comp Neurol 73: 59–86CrossRefGoogle Scholar
  48. Weinberger DR, Berman KF, Zec RF (1986) Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia. I. Regional cerebral blood flow (rCBF) evidence. Arch Gen Psychiatry 43: 114–125Google Scholar
  49. Weinberger DR, Berman KF, Illowsky BP (1988) Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia. Arch Gen Psychiatry 45: 609–615PubMedCrossRefGoogle Scholar
  50. Wyatt RJ (1985) The dopamine hypothesis: variations on a theme. In: Cancro R, Dean SR (eds) Research in the schizophrenic disorders. Spectrum Publications (The Stanley R. Dean Award Lectures, vol 2 ), pp 225–247Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • D. A. Lewis
    • 1
  1. 1.Departments of Psychiatry and Behavioral NeuroscienceUniversity of PittsburghPittsburghUSA

Personalised recommendations