The anatomy of dopamine in monkey and human prefrontal cortex

  • P. S. Goldman-Rakic
  • M. S. Lidow
  • J. F. Smiley
  • M. S. Williams
Part of the Journal of Neural Transmission book series (NEURAL SUPPL, volume 36)


This chapter reviews recent evidence establishing the comparable organization of dopamine afferents and dopaminergic receptors in the human and monkey prefrontal cortex. Light microscopy using a dopamine-specific antibody reveals that the dopamine innervation in the human prefrontal cortex exhibits a distinct bilaminar distribution with dense bands of fibers in the upper and deeper strata of the cortex, closely resembling the patterning of dopamine fibers in the monkey prefrontal cortex. Also, EM-immunohistochemistry has now revealed identical synaptic complexes both in human and monkey. In both species, dopamine axons from symmetric synapses predominantly on the spines of pyramidal cells. In many cases, the same spine is apposed by an asymmetric, putatively excitatory synapse. Finally, both in human and monkey prefrontal cortex, the dopamine D1- specific ligand, 3H-SCH23390, and the D2-specific ligand, H3-raclopride, label binding sites in laminar positions which match the location of the densest dopamine innervation. These results indicate that the organization of the cortical dopamine system is essentially the same in macaque monkey and human and that the nonhuman primate is a suitable animal model for analysis of dopamine function in prefrontal cortex.


Prefrontal Cortex Asymmetric Synapse Mediodorsal Nucleus Symmetric Synapse Human Prefrontal Cortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berger B, Trottier S, Gaspar P, Verney C, Alvarez C (1986) Major dopamine innervation of the cortical motor areas in the cynomolgus monkey. Neurosci Lett 72: 121–127PubMedCrossRefGoogle Scholar
  2. Berger B, Trottier S, Verney C, Gaspar P, Alvarez C (1988) Regional and laminar distribution of dopamine and serotonin innervation in the cynomolgus cerebral cortex. Major differences of dopamine input in the granular and agranular cortices. A radioautographic study. J Comp Neurol 273: 99–119PubMedCrossRefGoogle Scholar
  3. Berger B, Febvret A, Greengard P, Goldman-Rakic PS (1990) DARPP-32, a phosphoprotein enriched in dopaminoceptive neurons bearing dopamine D1 receptors: distribution in the cerebral cortex of the newborn and adult rhesus monkey. J Comp Neurol 299: 327–348PubMedCrossRefGoogle Scholar
  4. Brown RM, Goldman PS (1976) Distribution and development of catecholamines in primate neocortex. Soc Neurosci Abstr 2: 469Google Scholar
  5. Brown RM, Crane AM, Goldman-Rakic PS (1977) Catecholamines in neocortex of rhesus monkeys: regional distribution and ontogenetic development. Brain Res 124: 576–580CrossRefGoogle Scholar
  6. Brown RM, Crane AM, Goldman PS (1979) Regional distribution of monoamines in the cerebral cortex and subcortical structures of the rhesus monkey: concentrations and in vivo synthesis rates. Brain Res 168: 133–150PubMedCrossRefGoogle Scholar
  7. Brozoski T, Brown RM, Rosvold HE, Goldman PS (1979) Cognitive deficit caused by depletion of dopamine in prefrontal cortex of rhesus monkey. Science 205: 929–932PubMedCrossRefGoogle Scholar
  8. Fallon JH, Loughlin SE (1987) Monoamine innervation of cerebral cortex and a theory of the role of monoamines in cerebral cortex and basal ganglia. In: Jones EG, Peters A (eds) Cerebral cortex, vol 6. Plenum, New York, pp 41–127Google Scholar
  9. Ferron A, Thierry AM, Le Douarin C, Glowinski J (1984) Inhibitory influence of the mesocortical dopaminergic system on spontaneous activity or excitatory response induced from the thalamic mediodorsal nucleus in the rat medial prefrontal cortex. Brain Res 302: 257–265PubMedCrossRefGoogle Scholar
  10. Freund TF, Powell JF, Smith AD (1984) Tyrosine hydroxylase-immunoreactive boutons in synaptic contact with identified striatonigral neurons, with particular reference to dendritic spines. Neuroscience 13: 1189–1215PubMedCrossRefGoogle Scholar
  11. Fuster JM (1980) The prefrontal cortex. Raven Press, New YorkGoogle Scholar
  12. Giguere M, Goldman-Rakic RS (1988) Mediodorsal nucleus: areal, laminar and tangential distribution of afferents and efferents in the frontal lobe of rhesus monkeys. J Comp Neurol 277: 195–213PubMedCrossRefGoogle Scholar
  13. Goldman-Rakic PS (1987) Circuitry of primate prefrontal cortex and regulation of behavior by representational memory. In: Plum F (ed) Handbook of physiology vol 5. The nervous system, higher functions of the brain ch 9. Am Physiol Soc, Bethesda MD, pp 373–417Google Scholar
  14. Goldman-Rakic PS, Leranth C, Williams MS, Mons N, Geffard M (1989) Dopamine synaptic complex with pyramidal neurons in primate cerebral cortex. Proc Natl Acad Sci 86: 9015–9019PubMedCrossRefGoogle Scholar
  15. Goldman-Rakic PS, Lidow MS, Gallager DW (1990) Overlap of dopaminergic, adrenergic, and serotoninergic receptors and complementarity of their subtypes in primate prefrontal cortex. J Neurosci 10: 2125–2138PubMedGoogle Scholar
  16. Halpain S, Girault JA, Zorn S, Greengard P (1990) Activation of NMDA receptor induces dephosphorylation of DARPP-32 in rat striatal slices. Nature 343: 369–372PubMedCrossRefGoogle Scholar
  17. Hyttel J (1982) Citalopram: basic and clinical studies. Prog Neuropharmacol Biol Psychiatry 6: 257–336Google Scholar
  18. Iorio IC, Barnett A, Leitz FH, Houser VP, Corduba CA (1983) SCH23390, a potential benzodiazepine antipsychotic with unique interactions on dopaminergic system. J Pharmacol Exp Ther 226: 462–468.PubMedGoogle Scholar
  19. Levitt P, Rakic P, Goldman-Rakic PS (1984) Region-specific distribution of catecholamine afferents in primate cerebral cortex: a fluorescence histochemical analysis. J Comp Neurol 227: 23–36PubMedCrossRefGoogle Scholar
  20. Lewis DA, Foote SL, Goldstein M, Morrison JH (1988) The dopaminergic innervation of monkey prefrontal cortex: a tyrosine hydroxylase immunohistochemical study. Brain Res 449: 225–243PubMedCrossRefGoogle Scholar
  21. Lidow MS, Goldman-Rakic PS, Rakic P, Innis R (1989) Dopamine D2 receptors in the cerebral cortex: distribution and pharmacological characterization with [3H]raclopride. Proc Natl Acad Sci 86: 6412–6416PubMedCrossRefGoogle Scholar
  22. Lidow MS, Goldman-Rakic PS, Gallager DW, Rakic P (1991) Distribution of dopaminergic receptors in the primate cerebral cortex: quantitative autoradiographic analysis using [3H]raclopride, [3H]spiperone and [3H]SCH23390. Neuroscience 40: 657–671PubMedCrossRefGoogle Scholar
  23. Martres MP, Sales N, Bouthenet ML, Schwartz JC (1985) Localization and pharmacological characterization of D-2 dopamine receptors in rat cerebral neocortex and cerebellum using [125I]iodosulpiride. Eur J Pharmacol 118: 211–219PubMedCrossRefGoogle Scholar
  24. Milner B (1964) Some effects of frontal lobectomy in man. In: Warren JM, Akert K (eds) The frontal granular cortex and behavior. McGraw-Hill, New York, pp 313–334Google Scholar
  25. Ouimet CC, Miller PE, Hemmings HC Jr, Walaas SI, Greengard P (1984) DARPP-32, a dopamine-and adenosine 3’: 5’-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. III. Immunocytochemical localization. J Neurosci 4: 111–124PubMedGoogle Scholar
  26. Sawaguchi T, Goldman-Rakic PS (1991) Dl dopamine receptors in prefrontal cortex: involvement in working memory. Science 251: 947–950PubMedCrossRefGoogle Scholar
  27. Schwartz ML, Goldman-Rakic PS (1984) Callosal and intrahemispheric connectivity of the prefrontal association cortex in rhesus monkey: relation between intraparietal and principal sulcal cortex. J Comp Neurol 226: 403–420PubMedCrossRefGoogle Scholar
  28. Schwartz ML, Dekker JJ, Goldman-Rakic PS (1991) Dual mode of corticothalamic synaptic termination in the mediodorsal nucleus of the rhesus monkey. J Comp Neurol 309: 289–304PubMedCrossRefGoogle Scholar
  29. Seguela P, Watkins KC, Descarries L (1988) Ultrastructural features of dopamine axon terminals in the anteromedial and suprarhinal cortex of adult rat. Brain Res 442: 11–22PubMedCrossRefGoogle Scholar
  30. Smiley JF, Williams SM, Szigeti K, Goldman-Rakic PS (1992) Light and electron microscopic characterization of dopamine-immunoreactive processes in human cerebral cortex. Comp Neurol (in press)Google Scholar
  31. Van Eden CG, Hoorneman, EMD, Buijs RM, Matthissen MAH, Geffard M, Uylings HBM (1987) Immunocytochemical localization of dopamine in the prefrontal cortex of the rat at the light and electron microscopical level. Neuroscience 22: 849–862PubMedCrossRefGoogle Scholar
  32. Verney C, Alvarez C, Geffard M, Berger B (1990) Ultrastructural double-labelling study of dopamine terminals and GABA-containing neurons in rat anteromedial cerebral cortex. Eur J Neurosci 2: 960–972PubMedCrossRefGoogle Scholar
  33. Walaas SI, Aswad DW, Greengard P (1983) AMP-regulated phosphoprotein enriched in dopamine-innervated brain regions. Nature 301: 69–71PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • P. S. Goldman-Rakic
    • 1
  • M. S. Lidow
    • 1
  • J. F. Smiley
    • 1
  • M. S. Williams
    • 1
  1. 1.Section of NeurobiologyYale School of MedicineNew HavenUSA

Personalised recommendations