On the influence of spatial resolution and of the size and form of regions of interest on the measurement of regional cerebral metabolic rates by positron emission tomography

  • T. Kuwert
  • T. Sures
  • H. Herzog
  • M. Loken
  • M. Hennerici
  • K.-J. Langen
  • L. E. Feinendegen
Conference paper
Part of the Journal of Neural Transmission book series (NEURAL SUPPL, volume 37)


Factors that affect the accuracy of the positron emission tomographic (PET) quantification of cerebral metabolic rates include the spatial resolution of the employed imaging device and the method used for extraction of regional metabolic values from the PET data set. The present article reviews (i) how and to what extent these two factors are presumed to influence the measurement of absolute values of cerebral metabolic rates and their ratios, and (ii) whether and how these factors may affect comparisons of regional metabolic rates between groups of subjects.


Positron Emission Tomography Partial Volume Effect Cereb Blood Flow Positron Emission Tomography Cerebral Metabolic Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bohm C, Greitz T, Kingsley D, Berggren B, Ollson L (1983) Adjustable computerized stereotaxic brain atlas for transmission and emission tomography. AJNR 4: 731–733PubMedGoogle Scholar
  2. Bohm C, Greitz T, Blomquist G, Farde L, Forssgren PO, Kingsley D, Sjögren I, Wiesel FA, Wik G (1986) Applications of a computerized adjustable brain atlas in positron emission tomography. Acta Radiol [Suppl] 369: 449–452 `Google Scholar
  3. Buchsbaum MS, Cappelletti J, Ball R, Hazlett E, King AC, Johnson J, Wu J, DeLisi LE (1984) Positron emission tomographic image measurement in schizophrenia and affective disorders. Ann Neurol 15 [Suppl]: S157 - S165PubMedCrossRefGoogle Scholar
  4. Eriksson L, Bergström M, Bohm C, Holte S, Kesselberg M, Litton J (1986) Figures of merit for different detector configurations utilized in high resolution positron cameras. IEEE Trans Nucl Sci NS 33: 446–451CrossRefGoogle Scholar
  5. Evans AC, Beil C, Marrett S, Thompson CJ, Hakin A (1988a) Anatomical-functional correlation using an adjustable MRI-based region of interest atlas with positron emission tomography. J Cereb Blood Flow Metab 8: 513–530PubMedCrossRefGoogle Scholar
  6. Evans AC, Beil C, Marrett S, Thompson CJ, Hakim A (1988b) Anatomical functional correlation using an adjustable MRI based atlas with PET. J Cereb Blood Flow Metab 8: 813–830CrossRefGoogle Scholar
  7. Evans AC, Marrett S, Collins L, Peters TM (1989) Anatomical-functional correlative analysis of the human brain using three-dimensional imaging systems. Proc SPIE 1092: 264–274Google Scholar
  8. Evans AC, Marrett S, Torrescorzo J, Ku S, Collins L (1991) MRI-PET correlation in three dimensions using a volume-of-interest (VOI) atlas. J Cereb Blood Flow Metab. 11: A69 - A78PubMedCrossRefGoogle Scholar
  9. Fox PT (1991) Physiological ROI definition by image subtraction. J Cereb Blood Flow Metab 11: A79 - A82PubMedCrossRefGoogle Scholar
  10. Fox PT, Kall B (1987) Stereotaxy as a means of anatomical localization in physiological brain images: proposals for further validation. J Cereb Blood Flow Metab 7: S18 - S20CrossRefGoogle Scholar
  11. Fox PT, Mintun MA (1989) Noninvasive functional brain mapping by change-distribution analysis of averaged PET images of H215O tissue activity. J Nucl Med 30: 141–149PubMedGoogle Scholar
  12. Fox PT, Mintun MA, Reiman E, Raichle ME (1988) Enhanced detection of focal brain responses using intersubject averaging and change-distribution analysis of subtracted PET images. J Cereb Blood Flow Metab 8: 642–653PubMedCrossRefGoogle Scholar
  13. Goffinet AM, De Volder AG, Gillain C, Rectem D, Bol A, Michel C, Cogneau M, Labar D, Laterre C (1989) Positron tomography demonstrates frontal lobe hypometabolism in progressive supranuclear palsy. Ann Neurol 25: 131–139PubMedCrossRefGoogle Scholar
  14. Grady CL (1991) Quantitative comparison of measurements of cerebral glucose metabolic rate made with two positron cameras. J Cereb Blood Flow Metab 11: A57 - A63PubMedCrossRefGoogle Scholar
  15. Grady CL, Berg G, Carson RE, Daube-Witherspoon ME, Friedland RP, Rapoport SI (1989) Quantitative comparison of cerebral glucose metabolic rates from two positron emission tomographs. J Nucl Med 30: 1386–1392PubMedGoogle Scholar
  16. Herholz K, Pawlik G, Wienhard K, Heiss W-D (1985) Computer assisted mapping in quantitative analysis of cerebral positron emission tomograms. J Comput Assist Tomogr 9: 154–161PubMedCrossRefGoogle Scholar
  17. Herholz K, Pawlik G, Wienhard K, Heiss W-D (1985) Computer assisted mapping in quantitative analysis of cerebral positron emission tomograms. J Comput Assist Tomogr 9: 154–161PubMedCrossRefGoogle Scholar
  18. Hoffman EJ, Huang S-C, Phelps ME (1979) Quantitation in positron emission com- puted tomography. 1. Effect of object size. J Comput Assist Tomogr 3: 299–308Google Scholar
  19. Karp JS, Daube-Whitherspoon ME,.Muellehner G (1991) Factors affecting accuracy and precision in PET volume imaging. J Cereb Blood Flow Metab 11: A38 - A44Google Scholar
  20. Kearfott KJ, Kluksdahl EM (1989) Effects of axial spatial resolution and sampling on object detectability and contrast for multiplanar positron emission tomography. Med Phys 16: 785–790PubMedCrossRefGoogle Scholar
  21. Kennedy C, Sakurada O, Shinohara M, Jehle J, Sokoloff L (1978) Local cerebral glucose utilization in the normal conscious macaque monkey. Ann Neurol 4: 293–301PubMedCrossRefGoogle Scholar
  22. Kessler RM, Ellis JR, Eden M (1984) Analysis of emission tomographic scan data: limitations imposed by resolution and background. J Comput Assist Tomogr 8: 514–522PubMedCrossRefGoogle Scholar
  23. Kuhl DE, Phelps ME, Markham CH, Metter EJ, Riege WH, Winter J (1982) Cerebral metabolism and atrophy in Huntington’s disease determined by 18FDG and computed tomographic scan. Ann Neurol 12: 425–434PubMedCrossRefGoogle Scholar
  24. Kuwert T, Lange HW, Langen K-J, Herzog H, Aulich A, Feinendegen LE (1990) Cortical and subcortical glucose consumption measured by PET in patients with Huntington’s disease. Brain 113: 1405–1423PubMedCrossRefGoogle Scholar
  25. Kuwert T, Hennerici M, Langen K-J, Aulich A, Herzog H, Sitzer M, Feinendegen LE (1991) Regional cerebral glucose consumption measured by positron emission tomography in patients with unilateral thalamic infarction. Cerebrovasc Dis 1: 327–336CrossRefGoogle Scholar
  26. Kuwert T, Sures T, Loken M, Langen K-J, Hennerici M, Feinendegen LE (1991) The influence of image resolution and of the size of regions of interest on the positron emission tomographic measurement of caudate glucose consumption. Nucl Med (submitted)Google Scholar
  27. Laplane D, Levasseur M, Pillon B, Dubois B, Baulac M, Mazoyer B, Tran Dinh S, Sette G, Danze F, Baron JC (1989) Obsessive-compulsive and other behavioural changes with bilateral basal ganglia lesions: neuropsychological, magnetic resonance imaging and positron tomography study. Brain 112: 699–725PubMedCrossRefGoogle Scholar
  28. Levy AV, Laska E, Brodie JD, Volkow ND, Wolf AP (1991) The spectral signature method for the analysis of PET brain images. J Cereb Blood Flow Metab 11: A103 - A113PubMedCrossRefGoogle Scholar
  29. Lueck C, Zeki S, Friston KJ, Delber M-P, Cope P, Cunningham VJ, Lammertsma AA, Kennard C, Frackowiak RSJ (1989) A colour centre in the cerebral cortex of man. Nature (London) 340: 386–389CrossRefGoogle Scholar
  30. Marrett S, Evans AC, Collins L, Peters TM (1989) A volume of interest ( VOI) atlas for the analysis of neurophysiological image data. Proc SPIE 1092: 467–472Google Scholar
  31. Martinot J-L, Hardy P, Feline A, Huret J-D, Mazoyer B, Attar-Levy D, Pappata S, Syrota A (1990) Left prefrontal glucose hypometabolism in the depressed state: a confirmation. Am J Psychiatry 147: 1313–1317PubMedGoogle Scholar
  32. Mazziotta JC, Koslow SH (1987) Assessment of goals and obstacles in data acquisition and analysis from emission tomography: report of a series of international workshops. J Cereb Blood Flow Metab 7: S1 - S31CrossRefGoogle Scholar
  33. Mazziotta JC, Phelps ME, Plummer D, Kuhl DE (1981) Quantitation in positron emission computed tomography. 5. Physical-anatomical effects. J Comput Assist Tomogr 5: 734–743Google Scholar
  34. Mazziotta JC, Pelizzari CC, Chen GT, Bookstein FL, Valentino D (1991) Region of interest issues: the relationship between structure and function in the brain. J Cereb Blood Flow Metab 11: A51 - A56PubMedCrossRefGoogle Scholar
  35. McNamara D, Horwitz B, Grady CL, Rapoport SI (1987) Topographical analysis of glucose metabolism, as measured with positron emission tomography, in dementia of the Alzheimer type: use of linear histograms. Int J Neurosci 36: 89–97PubMedCrossRefGoogle Scholar
  36. Mintun MA, Fox PT, Raichle ME (1989) A highly accurate method of localizing neuronal activity in the human brain with positron emission tomography. J Cereb Blood Flow Metab 9: 96–103PubMedCrossRefGoogle Scholar
  37. Moeller JR, Strother SC, Sidtis JJ, Rottenberg DA (1987) The scaled sub-profile model: a statistical approach to the analysis of functional patterns in positron emission tomographic data. J Cereb Blood Flow Metab 7: 649–658PubMedCrossRefGoogle Scholar
  38. Murayama H, Nohara N, Tanaka E, Hayashi T (1982) A quad BOO detector and its timing and positioning discrimination for positron computed tomography. Nucl Instr Meth 192: 501–511CrossRefGoogle Scholar
  39. Nutt R, Casey M, Carrol LR, Dahlborn M, Hoffman EJ (1985) A new multicrystal two dimensional detector block for PET. J Nucl Med 26: P28Google Scholar
  40. Pelizarri CA, Chen GTY, Spelbring DR, Weichselbaum RR, Chen C-T (1989) Accurate three-dimensional registration of CT, PET and MR images of the brain. J Comput Assist Tomogr 13: 20–26Google Scholar
  41. Rota Kops E, Herzog H, Schmid A, Winkens A, Dick R, Feinendegen LE (1989) Influence of some instrumental parameters on the determination of quantitative data using the PET scanner PC4096–15WB. Eur J Nucl Med 15: 701–704PubMedCrossRefGoogle Scholar
  42. Rota Kops E, Herzog H, Schmid A, Holte S, Feinendegen LE (1990) Performance characteristics of an eight-ring whole body PET scanner. J Comput Assist Tomogr 14: 437–445PubMedCrossRefGoogle Scholar
  43. Rottenberg DA, Moeller JR, Strother SC, Dhawan V, Sergi ML (1991) Effects of percent thresholding on the extraction of [18F]fluoro-deoxyglucose positron emission tomographic region-of-interest data. J Cereb Blood Flow Metab 11: A83 - A88PubMedCrossRefGoogle Scholar
  44. Seitz RJ, Bohm C, Greitz T, Roland PE, Ericksson L, Blomqvist G, Rosenqvist G, Nordell B (1990) Accuracy and precision of the computerized brain atlas program for localization and quantification in positron emission tomography. J Cereb Blood Flow Metab 10: 443–457PubMedCrossRefGoogle Scholar
  45. Strother SC, Liow J-S, Moeller JR, Sidtis JJ, Dhawan VJ, Rottenberg DA (1991) Absolute quantitation in neurological PET. Do we need it? J Cereb Blood Flow Metab 11: A3 - A16PubMedCrossRefGoogle Scholar
  46. Tyler JL, Strother SC, Zatorre RJ, Alivisatos B, Worsley KJ, Diksic M, Yamamoto YL (1988) Stability of regional cerebral glucose metabolism in the normal brain measured by positron emission tomography. J Nucl Med 29: 631–642PubMedGoogle Scholar
  47. Valentino DJ, Mazziotta JC, Huang HK (1988) Mapping brain function to brain anatomy. Proc SPIE 914: 445–451Google Scholar
  48. Young AB, Penney JB, Starosta-Rubinstein S, Markel DS, Berent S, Giordani B, Ehrenkaufer R, Jewett D, Hichwa R (1986) PET scan investigations of Huntington’s disease: cerebral metabolic correlates of neurological features and functional decline. Ann Neurol 20: 296–303PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • T. Kuwert
    • 1
  • T. Sures
    • 1
  • H. Herzog
    • 1
  • M. Loken
    • 1
    • 2
  • M. Hennerici
    • 3
  • K.-J. Langen
    • 1
  • L. E. Feinendegen
    • 1
  1. 1.Institute of MedicineResearch Center JülichJülichFederal Republic of Germany
  2. 2.Division of Nuclear MedicineUniversity of Minnesota Medical CenterMinneapoliUSA
  3. 3.Department of NeurologyUniversity of HeidelbergKlinikum MannheimFederal Republic of Germany

Personalised recommendations