Skip to main content

On the influence of spatial resolution and of the size and form of regions of interest on the measurement of regional cerebral metabolic rates by positron emission tomography

  • Conference paper
  • 34 Accesses

Part of the book series: Journal of Neural Transmission ((NEURAL SUPPL,volume 37))

Summary

Factors that affect the accuracy of the positron emission tomographic (PET) quantification of cerebral metabolic rates include the spatial resolution of the employed imaging device and the method used for extraction of regional metabolic values from the PET data set. The present article reviews (i) how and to what extent these two factors are presumed to influence the measurement of absolute values of cerebral metabolic rates and their ratios, and (ii) whether and how these factors may affect comparisons of regional metabolic rates between groups of subjects.

Alexander von Humboldt Awardee 1990-91

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bohm C, Greitz T, Kingsley D, Berggren B, Ollson L (1983) Adjustable computerized stereotaxic brain atlas for transmission and emission tomography. AJNR 4: 731–733

    PubMed  CAS  Google Scholar 

  • Bohm C, Greitz T, Blomquist G, Farde L, Forssgren PO, Kingsley D, Sjögren I, Wiesel FA, Wik G (1986) Applications of a computerized adjustable brain atlas in positron emission tomography. Acta Radiol [Suppl] 369: 449–452 `

    Google Scholar 

  • Buchsbaum MS, Cappelletti J, Ball R, Hazlett E, King AC, Johnson J, Wu J, DeLisi LE (1984) Positron emission tomographic image measurement in schizophrenia and affective disorders. Ann Neurol 15 [Suppl]: S157 - S165

    Article  PubMed  Google Scholar 

  • Eriksson L, Bergström M, Bohm C, Holte S, Kesselberg M, Litton J (1986) Figures of merit for different detector configurations utilized in high resolution positron cameras. IEEE Trans Nucl Sci NS 33: 446–451

    Article  Google Scholar 

  • Evans AC, Beil C, Marrett S, Thompson CJ, Hakin A (1988a) Anatomical-functional correlation using an adjustable MRI-based region of interest atlas with positron emission tomography. J Cereb Blood Flow Metab 8: 513–530

    Article  PubMed  CAS  Google Scholar 

  • Evans AC, Beil C, Marrett S, Thompson CJ, Hakim A (1988b) Anatomical functional correlation using an adjustable MRI based atlas with PET. J Cereb Blood Flow Metab 8: 813–830

    Article  Google Scholar 

  • Evans AC, Marrett S, Collins L, Peters TM (1989) Anatomical-functional correlative analysis of the human brain using three-dimensional imaging systems. Proc SPIE 1092: 264–274

    Google Scholar 

  • Evans AC, Marrett S, Torrescorzo J, Ku S, Collins L (1991) MRI-PET correlation in three dimensions using a volume-of-interest (VOI) atlas. J Cereb Blood Flow Metab. 11: A69 - A78

    Article  PubMed  CAS  Google Scholar 

  • Fox PT (1991) Physiological ROI definition by image subtraction. J Cereb Blood Flow Metab 11: A79 - A82

    Article  PubMed  CAS  Google Scholar 

  • Fox PT, Kall B (1987) Stereotaxy as a means of anatomical localization in physiological brain images: proposals for further validation. J Cereb Blood Flow Metab 7: S18 - S20

    Article  Google Scholar 

  • Fox PT, Mintun MA (1989) Noninvasive functional brain mapping by change-distribution analysis of averaged PET images of H215O tissue activity. J Nucl Med 30: 141–149

    PubMed  CAS  Google Scholar 

  • Fox PT, Mintun MA, Reiman E, Raichle ME (1988) Enhanced detection of focal brain responses using intersubject averaging and change-distribution analysis of subtracted PET images. J Cereb Blood Flow Metab 8: 642–653

    Article  PubMed  CAS  Google Scholar 

  • Goffinet AM, De Volder AG, Gillain C, Rectem D, Bol A, Michel C, Cogneau M, Labar D, Laterre C (1989) Positron tomography demonstrates frontal lobe hypometabolism in progressive supranuclear palsy. Ann Neurol 25: 131–139

    Article  PubMed  CAS  Google Scholar 

  • Grady CL (1991) Quantitative comparison of measurements of cerebral glucose metabolic rate made with two positron cameras. J Cereb Blood Flow Metab 11: A57 - A63

    Article  PubMed  CAS  Google Scholar 

  • Grady CL, Berg G, Carson RE, Daube-Witherspoon ME, Friedland RP, Rapoport SI (1989) Quantitative comparison of cerebral glucose metabolic rates from two positron emission tomographs. J Nucl Med 30: 1386–1392

    PubMed  CAS  Google Scholar 

  • Herholz K, Pawlik G, Wienhard K, Heiss W-D (1985) Computer assisted mapping in quantitative analysis of cerebral positron emission tomograms. J Comput Assist Tomogr 9: 154–161

    Article  PubMed  CAS  Google Scholar 

  • Herholz K, Pawlik G, Wienhard K, Heiss W-D (1985) Computer assisted mapping in quantitative analysis of cerebral positron emission tomograms. J Comput Assist Tomogr 9: 154–161

    Article  PubMed  CAS  Google Scholar 

  • Hoffman EJ, Huang S-C, Phelps ME (1979) Quantitation in positron emission com- puted tomography. 1. Effect of object size. J Comput Assist Tomogr 3: 299–308

    Google Scholar 

  • Karp JS, Daube-Whitherspoon ME,.Muellehner G (1991) Factors affecting accuracy and precision in PET volume imaging. J Cereb Blood Flow Metab 11: A38 - A44

    CAS  Google Scholar 

  • Kearfott KJ, Kluksdahl EM (1989) Effects of axial spatial resolution and sampling on object detectability and contrast for multiplanar positron emission tomography. Med Phys 16: 785–790

    Article  PubMed  CAS  Google Scholar 

  • Kennedy C, Sakurada O, Shinohara M, Jehle J, Sokoloff L (1978) Local cerebral glucose utilization in the normal conscious macaque monkey. Ann Neurol 4: 293–301

    Article  PubMed  CAS  Google Scholar 

  • Kessler RM, Ellis JR, Eden M (1984) Analysis of emission tomographic scan data: limitations imposed by resolution and background. J Comput Assist Tomogr 8: 514–522

    Article  PubMed  CAS  Google Scholar 

  • Kuhl DE, Phelps ME, Markham CH, Metter EJ, Riege WH, Winter J (1982) Cerebral metabolism and atrophy in Huntington’s disease determined by 18FDG and computed tomographic scan. Ann Neurol 12: 425–434

    Article  PubMed  CAS  Google Scholar 

  • Kuwert T, Lange HW, Langen K-J, Herzog H, Aulich A, Feinendegen LE (1990) Cortical and subcortical glucose consumption measured by PET in patients with Huntington’s disease. Brain 113: 1405–1423

    Article  PubMed  Google Scholar 

  • Kuwert T, Hennerici M, Langen K-J, Aulich A, Herzog H, Sitzer M, Feinendegen LE (1991) Regional cerebral glucose consumption measured by positron emission tomography in patients with unilateral thalamic infarction. Cerebrovasc Dis 1: 327–336

    Article  Google Scholar 

  • Kuwert T, Sures T, Loken M, Langen K-J, Hennerici M, Feinendegen LE (1991) The influence of image resolution and of the size of regions of interest on the positron emission tomographic measurement of caudate glucose consumption. Nucl Med (submitted)

    Google Scholar 

  • Laplane D, Levasseur M, Pillon B, Dubois B, Baulac M, Mazoyer B, Tran Dinh S, Sette G, Danze F, Baron JC (1989) Obsessive-compulsive and other behavioural changes with bilateral basal ganglia lesions: neuropsychological, magnetic resonance imaging and positron tomography study. Brain 112: 699–725

    Article  PubMed  Google Scholar 

  • Levy AV, Laska E, Brodie JD, Volkow ND, Wolf AP (1991) The spectral signature method for the analysis of PET brain images. J Cereb Blood Flow Metab 11: A103 - A113

    Article  PubMed  CAS  Google Scholar 

  • Lueck C, Zeki S, Friston KJ, Delber M-P, Cope P, Cunningham VJ, Lammertsma AA, Kennard C, Frackowiak RSJ (1989) A colour centre in the cerebral cortex of man. Nature (London) 340: 386–389

    Article  CAS  Google Scholar 

  • Marrett S, Evans AC, Collins L, Peters TM (1989) A volume of interest ( VOI) atlas for the analysis of neurophysiological image data. Proc SPIE 1092: 467–472

    Google Scholar 

  • Martinot J-L, Hardy P, Feline A, Huret J-D, Mazoyer B, Attar-Levy D, Pappata S, Syrota A (1990) Left prefrontal glucose hypometabolism in the depressed state: a confirmation. Am J Psychiatry 147: 1313–1317

    PubMed  CAS  Google Scholar 

  • Mazziotta JC, Koslow SH (1987) Assessment of goals and obstacles in data acquisition and analysis from emission tomography: report of a series of international workshops. J Cereb Blood Flow Metab 7: S1 - S31

    Article  Google Scholar 

  • Mazziotta JC, Phelps ME, Plummer D, Kuhl DE (1981) Quantitation in positron emission computed tomography. 5. Physical-anatomical effects. J Comput Assist Tomogr 5: 734–743

    Google Scholar 

  • Mazziotta JC, Pelizzari CC, Chen GT, Bookstein FL, Valentino D (1991) Region of interest issues: the relationship between structure and function in the brain. J Cereb Blood Flow Metab 11: A51 - A56

    Article  PubMed  CAS  Google Scholar 

  • McNamara D, Horwitz B, Grady CL, Rapoport SI (1987) Topographical analysis of glucose metabolism, as measured with positron emission tomography, in dementia of the Alzheimer type: use of linear histograms. Int J Neurosci 36: 89–97

    Article  PubMed  CAS  Google Scholar 

  • Mintun MA, Fox PT, Raichle ME (1989) A highly accurate method of localizing neuronal activity in the human brain with positron emission tomography. J Cereb Blood Flow Metab 9: 96–103

    Article  PubMed  CAS  Google Scholar 

  • Moeller JR, Strother SC, Sidtis JJ, Rottenberg DA (1987) The scaled sub-profile model: a statistical approach to the analysis of functional patterns in positron emission tomographic data. J Cereb Blood Flow Metab 7: 649–658

    Article  PubMed  CAS  Google Scholar 

  • Murayama H, Nohara N, Tanaka E, Hayashi T (1982) A quad BOO detector and its timing and positioning discrimination for positron computed tomography. Nucl Instr Meth 192: 501–511

    Article  CAS  Google Scholar 

  • Nutt R, Casey M, Carrol LR, Dahlborn M, Hoffman EJ (1985) A new multicrystal two dimensional detector block for PET. J Nucl Med 26: P28

    Google Scholar 

  • Pelizarri CA, Chen GTY, Spelbring DR, Weichselbaum RR, Chen C-T (1989) Accurate three-dimensional registration of CT, PET and MR images of the brain. J Comput Assist Tomogr 13: 20–26

    Google Scholar 

  • Rota Kops E, Herzog H, Schmid A, Winkens A, Dick R, Feinendegen LE (1989) Influence of some instrumental parameters on the determination of quantitative data using the PET scanner PC4096–15WB. Eur J Nucl Med 15: 701–704

    Article  PubMed  CAS  Google Scholar 

  • Rota Kops E, Herzog H, Schmid A, Holte S, Feinendegen LE (1990) Performance characteristics of an eight-ring whole body PET scanner. J Comput Assist Tomogr 14: 437–445

    Article  PubMed  CAS  Google Scholar 

  • Rottenberg DA, Moeller JR, Strother SC, Dhawan V, Sergi ML (1991) Effects of percent thresholding on the extraction of [18F]fluoro-deoxyglucose positron emission tomographic region-of-interest data. J Cereb Blood Flow Metab 11: A83 - A88

    Article  PubMed  CAS  Google Scholar 

  • Seitz RJ, Bohm C, Greitz T, Roland PE, Ericksson L, Blomqvist G, Rosenqvist G, Nordell B (1990) Accuracy and precision of the computerized brain atlas program for localization and quantification in positron emission tomography. J Cereb Blood Flow Metab 10: 443–457

    Article  PubMed  CAS  Google Scholar 

  • Strother SC, Liow J-S, Moeller JR, Sidtis JJ, Dhawan VJ, Rottenberg DA (1991) Absolute quantitation in neurological PET. Do we need it? J Cereb Blood Flow Metab 11: A3 - A16

    Article  PubMed  CAS  Google Scholar 

  • Tyler JL, Strother SC, Zatorre RJ, Alivisatos B, Worsley KJ, Diksic M, Yamamoto YL (1988) Stability of regional cerebral glucose metabolism in the normal brain measured by positron emission tomography. J Nucl Med 29: 631–642

    PubMed  CAS  Google Scholar 

  • Valentino DJ, Mazziotta JC, Huang HK (1988) Mapping brain function to brain anatomy. Proc SPIE 914: 445–451

    Google Scholar 

  • Young AB, Penney JB, Starosta-Rubinstein S, Markel DS, Berent S, Giordani B, Ehrenkaufer R, Jewett D, Hichwa R (1986) PET scan investigations of Huntington’s disease: cerebral metabolic correlates of neurological features and functional decline. Ann Neurol 20: 296–303

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag

About this paper

Cite this paper

Kuwert, T. et al. (1992). On the influence of spatial resolution and of the size and form of regions of interest on the measurement of regional cerebral metabolic rates by positron emission tomography. In: Ågren, H., Martinot, JL., Wiesel, FA. (eds) Studies of Brain Metabolism in Psychiatric Patients: Can Standards Be Drawn?. Journal of Neural Transmission, vol 37. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9209-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9209-2_5

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82346-0

  • Online ISBN: 978-3-7091-9209-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics