The FDG model and its application in clinical PET studies

  • K. Wienhard
Part of the Journal of Neural Transmission book series (NEURAL SUPPL, volume 37)


The FDG method, as it is applied in clinical PET studies is reviewed. The influence of different implementations of the method and instrumental inaccuracies on the values of cerebral metabolic rate of glucose is discussed. For the comparison of the results between different groups standardized procedures are recommended.


Positron emISSIon Tomography Attenuation Correction Cereb Blood Flow Cerebral Metabolic Rate Positron emISSIon Tomography System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baron JC, Rougemont D, Soussaline F, Bustany P, Crouzel C, Bousser MG, Comar D (1984) Local interrelationships of cerebral oxygen consumption and glucose utilization in normal subjects and in ischemic stroke patients: a positron tomography study. J Cereb Blood Flow Metab 4: 140–149PubMedCrossRefGoogle Scholar
  2. Bergström M, Boethius J, Eriksson L, Greitz T, Ribbe T, Widén L (1981) Head fixation device for reproducible position alignment in transmission CT and positron emission tomography. J Comput Assist Tomogr 5: 136–141PubMedCrossRefGoogle Scholar
  3. Bergström M, Litton J, Eriksson L, Bohm C, Blomqvist G (1982) Determination of object contour from projections for attenuation correction in cranial positron emission tomography. J Comput Assist Tomogr 6: 365–372PubMedCrossRefGoogle Scholar
  4. Brooks RA (1982) Alternative formula for glucose utilization using labelled deoxyglucose. J Nucl Med 23: 528–539Google Scholar
  5. Gjedde A, Wienhard K, Heiss WD, Kloster G, Diemer NH, Herholz K, Pawlik G (1985) Comparative regional analysis of 2-fluorodeoxyglucose and methylglucose uptake in brain of four stroke patients. With special reference to the regional estimation of the lumped constant. J Cereb Blood Flow Metab 5: 163–178PubMedCrossRefGoogle Scholar
  6. Hawkins RA, Phelps ME, Huang SC, Kuhl DE (1981) Effect of ischemia on quantification of local cerebral glucose metabolic rate in man. J Cereb Blood Flow Metab 1: 37–51PubMedCrossRefGoogle Scholar
  7. Hawkins RA, Phelps ME, Huang SC (1986) Effects of temporal sampling, glucose metabolic rates and disruptions of the blood brain barrier on the FDG model with and without a vascular compartment: studies in human brain tumours with PET. J Cereb Blood Flow Metab 6: 170–183PubMedCrossRefGoogle Scholar
  8. Heiss WD, Wienhard K, Pawlik G, Wagner R, Ilsen HW, Herholz K (1983) Hypo-metabolism in stroke: cerebral metabolic rate for glucose in infarcted and remote tissue obtained by dynamic determination of individual kinetic constants. In: Greitz T, Ingvar DH, Widén L (eds) The metabolism of the human brain studied with positron emission tomography. Raven Press, New York, pp 399–409Google Scholar
  9. Herholz K (1988) Non-stationary spatial filtering and accelerated curve fitting for parametric imaging with dynamic PET. Eur J Nucl Med 14: 477–484PubMedCrossRefGoogle Scholar
  10. Herholz K, Patlak CS (1987) The influence of tissue heterogeneity on results of fitting non-linear model equations to regional tracer uptake curves: with an application to compartmental models used in positron emission tomography. J Cereb Blood Flow Metab 7: 214–229PubMedCrossRefGoogle Scholar
  11. Huang SC, Phelps ME, Hoffman EJ, Sideris K, Selin CJ, Kuhl DE (1980) Noninvasive determination of local cerebral metabolic rate of glucose in man. Am J Physiol 238: 569–582Google Scholar
  12. Huang SC, Carson RE, Phelps ME, Hoffman EJ, Schelbert HR, Kuhl DE (1981) A boundary method for attenuation correction in positron computed tomography. J Nucl Med 22: 627–637PubMedGoogle Scholar
  13. Hutchins GD, Holden JE, Koeppe RA, Halama JR, Gatley SJ, Nickles RI (1984) Alternative approaches to single scan estimation of cerebral glucose metabolic rate using glucose analogs, with particular application to ischemia. J Cereb Blood Flow Metab 4: 35–40PubMedCrossRefGoogle Scholar
  14. Lammertsma AA, Brooks DJ, Frackowiak RSJ, Beaney RP, Herold S, Heather JD, Palmer AJ, Jones T (1987) Measurement of glucose utilization with (18F)2-fluoro-2deoxy-D-glucose: a comparison of different analytical methods. J Cereb Blood Flow Metab 7: 161–172PubMedCrossRefGoogle Scholar
  15. Mazoyer BM, Huesman RH, Budinger TF, Knittel BL (1986) Dynamic PET data analysis. J Comput Assist Tomogr 10: 645–653PubMedCrossRefGoogle Scholar
  16. Michel C, Bol A, De Volder AG, Goffinet AM (1989) Online brain attenuation correction in PET: towards a fully automated data handling in a clinical environment. Eur J Nucl Med 15: 712–718PubMedCrossRefGoogle Scholar
  17. Patlak CS, Blasberg RG, Fenstermacher JD (1983) Graphical evaluation of blood-tobrain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 3: 1–7PubMedCrossRefGoogle Scholar
  18. Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE (1979) Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2fluoro-2-deoxy-D-glucose: validation of the model. Ann Neurol 6: 371–388PubMedCrossRefGoogle Scholar
  19. Reivich M, Kuhl D, Wolf A, Greenberg J, Phelps M, Ido T, Casella V, Fowler J, Hoffman E, Alavi A, Sokoloff L (1979) The 18F-fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res 44: 127–137PubMedGoogle Scholar
  20. Reivich M, Alavi A, Wolf A, Fowler J, Arnett C, MacGregor RR, Shiue CY, Atkins H, Anand A, Dann R, Greenberg JH (1985) Glucose metabolic rate kinetic model parameter determination in humans: the lumped constants and rate constants for 18F-fluorodeoxyglucose and 11C-deoxyglucose. J Cereb Blood Flow Metab 5: 179–192PubMedCrossRefGoogle Scholar
  21. Rhodes CG, Wise RJS, Gibbs JM, Frackowiak RSJ, Hatazawa J, Palmer AJ, Thomas DGT, Jones T (1983) In vivo disturbance of the oxidative metabolism of glucose in human cerebral gliomas. Ann Neurol 14: 614–626PubMedCrossRefGoogle Scholar
  22. Sasaki H, Kanno I, Murakami M, Shishido F, Uemura K (1986) Tomographic mapping of kinetic rate constants in the fluorodeoxyglucose model using dynamic positron emission tomography. J Cereb Blood Flow Metab 6: 447–454PubMedCrossRefGoogle Scholar
  23. Sokoloff L, Reivich M, Kennedy C, DesRosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The 14C-deoxyglucose method for the measurement of local cerebral glucose utilisation: theory, procedure and normal values in the conscious and anaesthetized albino rat. J Neurochem 28: 897–916PubMedCrossRefGoogle Scholar
  24. Wienhard K, Pawlik G, Herholz K, Wagner R, Heiss WD (1985) Estimation of local cerebral glucose utilisation by positron emission tomography of 18F-2-fluoro-2deoxy-D-glucose: a critical appraisal of optimisation procedures. J Cereb Blood Flow Metab 5: 115–125PubMedCrossRefGoogle Scholar
  25. Wienhard K, Pawlik G, Nebeling B, Rudolf J, Fink G, Hamacher K, Stöcklin G, Heiss WD (1991) Estimation of local cerebral glucose utilisation by positron emission tomography: comparison of (18F)-2-fluoro-2-deoxy-D-glucose and (18F)-2-fluoro-2deoxy-D-mannose in patients with focal brain lesions. J Cereb Blood Flow Metab 11: 485–491PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • K. Wienhard
    • 1
  1. 1.Max-Planck-Institut für Neurologische ForschungKöln 41 (Lindenthal)Federal Republic of Germany

Personalised recommendations