Glucose metabolism in psychiatric disorders: how can we facilitate comparisons among studies?

  • F.-A. Wiesel
Part of the Journal of Neural Transmission book series (NEURAL SUPPL, volume 37)


Positron emission tomography (PET) offers a possibility to study brain function and its relationship to psychiatric disorders. Clinical studies have demonstrated that several psychiatric diseases are coupled with changes in brain glucose metabolism. Schizophrenia seems to involve a lower metabolism in wide areas of the brain — both cortical and subcortical structures. Depression probably involves dysfunction of the metabolism in dorsolateral prefrontal cortex. Obsessive compulsive disorder, panic disorder, anorexia nervosa and the experience of anxiety may involve increased metabolic rates. The results from the different studies do not allow quantitative comparisons or detailed analyses because of large differences in experimental and clinical methodology.

The term Good Clinical PET Practice (GCPP) is suggested to encourage standardization in clinical investigations. GCPP includes standardization of both experimental factors (lumped constant, arterialization, purity of tracer, regions of interest, relative rates) and clinical factors (state of the subject, wakefulness, anxiety, gender, course of the disease) in PET performance.


Positron Emission Tomography Anorexia Nervosa Eating Disorder Schizophrenic Patient Bulimia Nervosa 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bartlett EJ, Barouche F, Brodie JD, Wolkin A, Angrist B, Rotrosen J, Wolf AP (1991) Stability of resting deoxyglucose metabolic values in PET studies of schizophrenia. Psychiatry Res Neuroimaging 40: 11–20CrossRefGoogle Scholar
  2. Baxter LR, Phelps ME, Mazziotta JC, Schwartz JM, Gerner RH, Selin CE, Sumida RM (1985) Cerebral metabolic rates for glucose in mood disorders. Arch Gen Psychiatry 42: 441–447PubMedCrossRefGoogle Scholar
  3. Baxter LR Jr, Mazziotta JC, Phelps ME, Selin CE, Guze BH, Fairbanks L (1987a) Cerebral glucose metabolic rates in normal human females versus normal males. Psychiatry Res 21: 237–245CrossRefGoogle Scholar
  4. Baxter LR, Phelps ME, Mazziotta JC, Guze BH, Schwartz JM, Selin CE (1987b) Local cerebral glucose metabolic rates in obsessive-compulsive disorder. Arch Gen Psychiatry 44: 211–219CrossRefGoogle Scholar
  5. Baxter LR, Schwartz JM, Mazziotta JC, Phelps ME, Pahl JJ, Guze BH, Fairbanks L (1988) Cerebral glucose metabolic rates in nondepressed patients with obsessive-compulsive disorder. Am J Psychiatry 145: 1560–1563PubMedGoogle Scholar
  6. Baxter LR, Schwartz JM, Phelps ME, Mazziotta JC, Guze BH, Selin CE, Gerner RH, Sumida RM (1989) Reduction of prefrontal cortex glucose metabolism common to three types of depression. Arch Gen Psychiatry 46: 243–250PubMedCrossRefGoogle Scholar
  7. Benkelfat C, Nordahl TD, Semple WE, King C, Murphy DL, Cohen RM (1990) Local cerebral glucose metabolic rates in obsessive-compulsive disorder. Arch Gen Psychiatry 47: 840–848PubMedCrossRefGoogle Scholar
  8. Blomqvuist G, Stone-Elander S, Halldin C, Roland PE, Widén L, Lindqvist M, Swahn C-G, Lângström B, Wiesel F-A (1990) Positron emission tomographic measurements of cerebral glucose utilization using [1-11C]D-glucose. J Cereb Blood Flow Metab 10: 467–483CrossRefGoogle Scholar
  9. Borg J, Edström L, Bjerkenstedt L, Wiesel FA, Farde L, Hagenfeldt L (1987) Muscle biopsy findings, conduction velocity and refractory period of single motor nerve fibres in schizophrenia. J Neurol Neurosurg Psychiatry 50: 1655–1664PubMedCrossRefGoogle Scholar
  10. Brooks RA, Hatazawa J, Di Chiro G, Larson SM, Fishbein DS (1987) Human cerebral glucose metabolism determined by positron emission tomography: a revisit. J Cereb Blood Flow Metab 7: 427–432PubMedCrossRefGoogle Scholar
  11. Buchsbaum MS, Ingvar DH, Kessler R, Waters RN, Cappeletti J, van Kammen DP, King C, Johnson JL, Manning RG, Flynn RW, Mann LS, Bunney WE Jr, Sokoloff L (1982) Cerebral glucography with positron tomography. Arch Gen Psychiatry 39: 251–259PubMedCrossRefGoogle Scholar
  12. Buchsbaum MS, Delisi LE, Holcomb HH, Cappelletti J, King AC, Johnson J, Hazlett E, Dowling-Zimmerman S, Post RM, Morihisa J, Carpenterr W, Cohen R, Pickar D, Weinberger DR, Margolin R, Kessler RM (1984) Anteroposterior gradients in cerebral glucose use in schizophrenia and affective disorders. Arch Gen Psychiatry 41: 1159–1166PubMedCrossRefGoogle Scholar
  13. Buchsbaum MS, Wu J, Delisi LE, Holcomb H, Kessler R, Johnson J, King AC, Hazlett E, Langston K, Post RM (1986) Frontal cortex and basal ganglia metabolic rates assessed by positron emission tomography with [18F]2-deoxyglucose in affective illness. J Affect Dis 10: 137–152PubMedCrossRefGoogle Scholar
  14. Buchsbaum MS, Gillin JC, Wu J, Hazlett E, Sicotte N, Dupont RM, Bunney WE Jr (1989) Regional cerebral glucose metabolic rate in human sleep assessed by positron emission tomography. Life Sci 45: 1349–1356PubMedCrossRefGoogle Scholar
  15. Buchsbaum MS, Nuechterlein KH, Haier RI, Wu J, Sicotte N, Hazlett E, Asarnow R, Potkin S, Gich S (1990) Glucose metabolic rate in normals and schizophrenics during the continuous performance test assessed by positron emission tomography. Br J Psychiatry 156: 216–227PubMedCrossRefGoogle Scholar
  16. Cleghorn JM, Garnett ES, Nahmias C, Firnau G, Brown GM, Kaplan R, Szechtman H, Szechtman B (1989) Increased frontal and reduced parietal glucose metabolism in acute untreated schizophrenia. Psychiatry Res 28: 119–133PubMedCrossRefGoogle Scholar
  17. Cohen RM, Semple WE, Gross M, Nordahl TD, King AC, Pickar D, Post RM (1989) Evidence for common alterations in cerebral glucose metabolism in major affective disorders and schizophrenia. Neuropsychopharmacology 2: 241–254PubMedCrossRefGoogle Scholar
  18. Delvenne V, Lotstra F, Goldman S, Mendelbaum K, Appelbaum-Fondu J, Bidaut LM, Luxen A, Schoutens A, Mendlewicz J (1990) Caudate hypermetabolism in eating disorders detected by 18F-fluorodeoxyglucose method and positron emission tomography. In: 17th Congress of Collegium Internationale NeuroPsychopharmacologicum, Kyoto, Japan, p 330Google Scholar
  19. DeLisi LE, Buchsbaum MS, Holcomb HH, Langston KC, King AC, Kessler R, Pickar D, Carpenter T Jr, Morihisa JM, Margolin R, Weinberger RD (1989) Increased temporal lobe glucose use in chronic schizophrenic patients. Biol Psychiatry 25: 835–851PubMedCrossRefGoogle Scholar
  20. Duara R, Grady C, Haxby J, Ingvar D, Sokoloff L, Margolin RA, Manning RG, Cutler NR, Rapoport SI (1984) Human brain glucose utilization and cognitive function in relation to age. Ann Neurol 16: 702–713CrossRefGoogle Scholar
  21. Geraud G, Arné-Bes C, Guell A, Bes A (1987) Reversibility of hemodynamic hypofrontality in schizophrenia. J Cereb Blood Flow Metab 7: 9–12PubMedCrossRefGoogle Scholar
  22. Giordani B, Boivin MJ, Berent S, Betley AT, Koeppe RA, Rothley JM, Modell JG, Hichwa RD, Kuhl DE (1990) Anxiety and cerebral cortical metabolism in normal persons. Psychiatry Res Neuroimaging 35: 49–60CrossRefGoogle Scholar
  23. Goode DJ, Meltzer HY, Caryton JW, Mazura TA (1977) Physiologic abnormalities of the neuronmuscular system in schizophrenia. Schizophr Bull 3: 121–138PubMedGoogle Scholar
  24. Gottschalk LA, Buchsbaum MS, Gillin JC, Wu JC, Reynolds CA, Herrera DB (1991) Anxiety levels in dreams: relation to localized cerebral glucose metabolic rate. Brain Res 538: 107–110PubMedCrossRefGoogle Scholar
  25. Gur CR, Gur RE, Resnick SM, Skolnick BE, Alavi A, Reivich M (1984) The effect of anxiety on cortical cerebral blood flow and metabolism. J Cereb Blood Flow Metab 7: 173–177CrossRefGoogle Scholar
  26. Gur RE, Resnick SM, Alavi A, Gur RC, Caroff S, Dann R, Silver FL, Saykin AJ, Chawluk JB, Kushner M, Reivich M (1987) Regional brain function in schizophrenia. I. A positron emission tomography study. Arch Gen Psychiatry 44: 119–125PubMedCrossRefGoogle Scholar
  27. Hagenfeldt L, Venizelos N, Bjerkenstedt L, Wiesel FA (1987) Decreased tyrosine transport in fibroblasts from schizophrenic patients. Life Sci 41: 2749–2757PubMedCrossRefGoogle Scholar
  28. Hagman JO, Buchsbaum MS, Wu JC, Rao SJ, Reynolds CA, Blinder BJ (1990) Comparison of regional brain metabolism in bulimia nervosa and affective disorder assessed with positron emission tomography. J Affect Disord 19: 153–162PubMedCrossRefGoogle Scholar
  29. Herholz K, Krieg JC, Emrich HM, Pawlik G, Beil C, Pirke KM, Pahl JJ, Wagner R, Wienhard K, Ploog D, Heiss W-D (1987) Regional cerebral glucose metabolism in anorexia nervosa measured by positron emission tomography. Biol Psychiatry 22: 43–51PubMedCrossRefGoogle Scholar
  30. Huret JD, Mazoyer BM, Lesur A, Martinot JL, Pappata S, Baron JC, Lemperiere T, Syrota A (1991) Cortical metabolic patterns in schizophrenia: a mismatch with the positive-negative paradigm. Eur Psychiatry 6: 7–19Google Scholar
  31. Ingvar DH, Franzen G (1974) Abnormalities of cerebral blood flow distribution in patients with chronic schizophrenia. Acta Psychiatr Scand 50: 425–462PubMedCrossRefGoogle Scholar
  32. Kety SS (1950) Circulation and metabolism in the human brain in health and disease. Am J Med 8: 205–217PubMedCrossRefGoogle Scholar
  33. Kiosawa M, Bosley TM, Kushner M, Jamieson D, Alavi A, Savino PJ, Sergott RC, Reivich M (1989) Positron emission tomography to study the effect of eye closure and optic nerve damage on human cerebral glucose metabolism. Am J Ophthalmol 108: 147–152Google Scholar
  34. Kling AS, Metter EJ, Riege WH, Kuhl DE (1986) Comparison of PET measurement of local brain glucose metabolism and CAT measurement of brain atrophy in chronic schizophrenia and depression. Am J Psychiatry 143: 175–180PubMedGoogle Scholar
  35. Krieg J-C, Holthoff V, Schrieber W, Pirke KM, Herholz K (1991) Glucose metabolism in the caudate nuclei of patients with eating disorders, measured by PET. Eur Arch Psychiatry Clin Neurosci 240: 331–333PubMedCrossRefGoogle Scholar
  36. Maquet P, Dive D, Salmon E, von Frenckel R, Franck G (1990) Reproducibility of cerebral glucose utilization measured by PET and the [18F]2-fluoro-2-deoxy-Dglucose method in resting, healthy human subjects. Eur J Nucl Med 16: 267–273PubMedCrossRefGoogle Scholar
  37. Martinot JL, Allilaire JF, Mazoyer BM, Hantouche E, Huret JD, Legaut-Demare F, Deslauriers AG, Hardy P, Pappata S, Baron JC, Syrota A (1990a) Obsessive-compulsive disorder: a clinical neuropsychological and positron emission tomography study. Acta Psychiatr Scand 82: 233–242CrossRefGoogle Scholar
  38. Martinot JL, Hardy P, Feline A, Hure JD, Mazoyer B, Attar-Levy D, Pappata S, Syrota A (1990b) Left prefrontal glucose hypometabolism in the depressed state: a confirmation. Am J Psychiatry 147: 1313–1317Google Scholar
  39. Mazziotta JC, Phelps ME, Plummer D, Kuhl DE (1981) Quantitation in positron emission computed tomography. 5. Physical-anatomical effects. J Comput Assist Tomogr 5: 734–743PubMedCrossRefGoogle Scholar
  40. Mazziotta JC, Phelps ME, Carson RE, Kuhl DE (1982) Tomographic mapping of human cerebral metabolism: sensory deprivation. Ann Neurol 12: 435–444PubMedCrossRefGoogle Scholar
  41. Mindus P (1991) Capsulotomy in anxiety disorders. A multidisciplinary study. Thesis, Karolinska Institutet, StockholmGoogle Scholar
  42. Miura SA, Schapiro MB, Grady CL, Kumar A, Salerno JA, Kozachuk WE, Wagner E, Rapoport SI, Horwitz B (1990) Effect of gender on glucose utilization rates in healthy humans: a positron emission tomography study. J Neurosci Res 27: 500–504PubMedCrossRefGoogle Scholar
  43. Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE (1979) Tomographic measurement of local cerebral glucose (F-18)2-fluoro-2-deoxy-Dglucose: validation of method. Ann Neurol 6: 371–388PubMedCrossRefGoogle Scholar
  44. Post RM, DeLisi LE, Holcomb HH, Uhde TW, Cohen R, Buchsbaum MS (1987) Glucose utilization in the temporal cortex of affectively ill patients: positron emission tomography. Biol Psychiatry 22: 545–553PubMedCrossRefGoogle Scholar
  45. Raichle ME, Taylor JR, Herscovitch P, Guze SB (1985) Brain circulation and metabolism in depression. In: Greitz T, Ingvar DH, Widén L (eds) The metabolism of the human brain studied with positron emission tomography. Raven Press, New York, pp 453–456Google Scholar
  46. Reiman EM, Raichle ME, Robins E, Butler FK, Herscovitch P, Fox P, Perlmutter J (1986) The application of positron emission tomography to the study of panic disorder. Am J Psychiatry 143: 469–477PubMedGoogle Scholar
  47. Reiman EM, Fusselman MJ, Fox PT, Raichle ME (1989) Neuroanatomical correlates of anticipatory anxiety. Science 243: 1071–1074PubMedCrossRefGoogle Scholar
  48. Reivich M, Alavi A, Gur RC (1984) Positron emission tomographic studies of perceptual tasks. Ann Neurol [Suppl] 15: 61–65CrossRefGoogle Scholar
  49. Reivich M, Alavi A, Wolf A, Fowler J, Russell J, Arnett C, MacGregor RR, Shiue CY, Atkins H, Anand A, Dann R, Greenberg JH (1985) Glucose metabolic rate kinetic model parameter determination in humans: the lumped constants and rate constants for [11C]deoxyglucose. J Cereb Blood Flow Metab 5: 179–192PubMedCrossRefGoogle Scholar
  50. Resnick SM, Gur RE, Alavi A, Gur RC, Reivich M (1988) Positron emission tomography and subcortical glucose metabolism in schizophrenia. Psychiatry Res 24: 1–11PubMedCrossRefGoogle Scholar
  51. Samson Y, Baron JC, Feline A, Bories J, Crouzel C (1986) Local cerebral glucose utilisation in chronic alcoholics: a positron tomographic study. J Neurol Neurosurg Psychiatry 49: 1165–1170PubMedCrossRefGoogle Scholar
  52. Sheppard G, Manchanda R, Gruzelier J, Hirsch SR (1983) 15O positron emission tomographic scanning in predominantly never-treated acute schizophrenic patients. Lancet ii: 1448–1452CrossRefGoogle Scholar
  53. Sokoloff L (1985) Basic principles in imaging of regional cerebral metabolic rates. In: Sokoloff L (ed) Brain imaging and brain function. Raven Press, New York, pp 21–49Google Scholar
  54. Swedo SE, Schapiro MB, Grady CL, Cheslow DL, Leonard HL, Kumar A, Friedland R, Rapoport SL, Rapoport JL (1989) Cerebral glucose metabolism in childhood-onset obsessive-compulsive disorder. Arch Gen Psychiatry 46: 518–523PubMedCrossRefGoogle Scholar
  55. Volkow ND, Wolf AP, Van Gelder P, Brodie JD, Overall JE, Cancro R, Gomez-Mont F (1987) Phenomenological correlates of metabolic activity in 18 patients with chronic schizophrenia. Am J Psychiatry 144: 141–158Google Scholar
  56. Volkow ND, Hitzeman R, Wolf AP, Logan J, Fowler JS, Christman D, Dewey SL, Schyler D, Burr G, Vitkun S, Hirschowitz J (1990) Acute effects of ethanol on regional brain glucose metabolism and transport. Psychiatry Res Neuroimaging 35: 39–48CrossRefGoogle Scholar
  57. Warkentin S, Nilsson A, Risberg J, Karlson S, Flekköy K, Franzén G, Gustafson L, Rodriguez G (1990) Regional cerebral blood flow in schizophrenia: repeated studies during a psychotic episode. Psychiatry Res Neuroimaging 35: 27–38CrossRefGoogle Scholar
  58. Wiesel F-A (1989) Positron emission tomography in psychiatry. Psychiat Dev 1: 19–47Google Scholar
  59. Wiesel F-A, Wik G, Sjögren I, Blomqvist G, Greitz T, Stone-Elander S (1987) Regional brain glucose metabolism in drug-free schizophrenic patients and clinical correlates. Acta Psychiatr Scand 76: 628–641PubMedCrossRefGoogle Scholar
  60. Wiesel FA, Blomqvist G, Halldin C, Sjögren I, Bjerkenstedt L, Venizelos N, Hagenfeldt L (1991) The transport of tyrosine into the human brain as determined with L-[1-11C]tyrosine and PET. J Nucl Med 32: 2043–2049PubMedGoogle Scholar
  61. Wik G, Wiesel F-A (1991) Regional brain glucose metabolism and correlations to biochemical measures and anxiety in patients with schizophrenia. Psychiatry Res Neuroimaging 40: 101–114CrossRefGoogle Scholar
  62. Wik G, Borg S, Sjögren I, Wiesel F-A, Blomqvist G, Borg J, Greitz T, Nybäck H, Sedvall G, Stone-Elander S, Widén L (1988) PET determination of regional cerebral glucose metabolism in alcohol-dependent men and healthy controls using 11C-glucose. Acta Psychiatr Scand 78: 234–241PubMedCrossRefGoogle Scholar
  63. Wolkin A, Jaeger J, Brodie JD, Wolf AP, Fowler J, Rotrosen J, Gomez-Mont F, Cancro R (1985) Persistence of cerebral metabolic abnormalities in chronic schizophrenia as determined by positron emission tomography. Am J Psychiatry 142: 564–571PubMedGoogle Scholar
  64. Wolkin A, Angrist B, Wolf A, Brodie JD, Wolkon RN, Jaeger J, Cancro R, Rotrosen J (1988) Low frontal glucose utilization in chronic schizophrenia: a replication study. Am J Psychiatry 145: 251–253PubMedGoogle Scholar
  65. Wu JC, Hagman J, Buchsbaum MS, Blinder B, Derrfler M, Tai WT, Hazlett E, Sicotte N (1990) Greater left cerebral hemispheric metabolism in bulimia assessed by positron emission tomography. Am J Psychiatry 147: 309–312PubMedGoogle Scholar
  66. Wu JC, Buchsbaum MS, Hershey TG, Hazlett E, Sicotte N, Johnson JC (1991) PET in generalized anxiety disorder. Biol Psychiatry 29: 1181–1199PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • F.-A. Wiesel
    • 1
  1. 1.Department of PsychiatryUppsala UniversityUppsalaSweden

Personalised recommendations