Skip to main content

Interaktion von Vagus und Sympathikus im Tracheo-Bronchialsystem

  • Conference paper
Das cholinerge System der Atemwege
  • 10 Accesses

Zusammenfassung

Die Regulation der glatten Atemwegsmuskulatur ist speziesverschieden. Die gemeinsame embyologische Entstehung von Lunge und Darm erklärt die Tatsache, daß Morphologie und Funktion der Nerven, Ganglien, glatten Muskelzellen und Rezeptoren ähnlich bzw. gleich der des Sastrointestinaltraktes ist. Die glatte Muskulatur und die Innervation des Tracheobronchialsystems hat folgende anatomische, morphologische und funktionelle Charakteristika: Cholinerge exzitatorische Nerven und non-adrenerge, non-cholinerge (NANC) inhibitorische Nerven sowie non-cholinerge, non-adrenerge exzitatorische Nerven, dafür aber keine adrenergen Nerven. Ferner eine dem Gastrointestinaltrakt ähnliche Ultrastruktur der Ganglien, Zellverbindungen der glatten Muskelzellen vom Nexustyp sowie eine mögliche spontane, myogene Aktivität, β2-Rezeptoren mit inhibitorischer Wirkung α1-Rezeptoren mit exzitatorischer Wirkung. Im Hinblick auf die Pathogenese chronisch-obstruktiver Atemwegserkrankungen dürften die sensorischen, non-adrenergen und non-cholinergen exzitatorischen Nerven eine Rolle spielen, die jedoch nicht ganz geklärt ist. Neuropeptide, im speziellen Tachykinine, wie Substance P dürften eine wichtige Mediatorfunktion haben und für eine neurogene Entzündungsreaktion verantwortlich sein.

Daraus könnten sich neue therapeutische Ansätze ergeben, deren Ziel es sein sollte, die Neurotransmitter der non-adrenergen, non-cholinergen exzitatorischen Nerven zu inaktivieren und deren Reaktion — im besonderen die neurogene Entzündung — zu unterdrücken und VIP und verwandte Neuropeptide zu aktivieren und vermehrt verfügbar zu machen, um das notwendige Gleichgewicht zwischen exzitatorischen Mechanismen und inhibitorischen Mechanismen wieder herzustellen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Larsell G, Dow LS (1933) The innervation of the human lung. Am J Anat 52: 125–146

    Article  Google Scholar 

  2. Gaylor JB (1934) The intrinsic nervous mechanism of the human lung. Brain 57: 143–160

    Article  Google Scholar 

  3. Spencer H, Leof D (1964) The innervation of the human lung. J Anat 98: 599–609

    PubMed  CAS  Google Scholar 

  4. Nadel JA, Barnes PJ (1984) Autonomic regulation of the airways. Ann Rev Med 35: 451–467

    Article  PubMed  CAS  Google Scholar 

  5. Richardson JB (1979) Nerve supply to the lungs. Am Rev Respir Dis 199: 785–802

    Google Scholar 

  6. Richardson JB (1981) Nonadrenergic inhibitory innervation of the lung. Lung 159: 315–322

    Article  PubMed  CAS  Google Scholar 

  7. Barnes PJ (1984) The third nervous system in the lung: physiology and clinical perspectives. Thorax 39: 561–567

    Article  PubMed  CAS  Google Scholar 

  8. Laitinen LA (1987) Detailed analysis of neural elements in human airways. In: Kaliner M, Barnes P (eds) Neural regulation of the airways in health and disease. Marcel Dekker, New York pp 35–56

    Google Scholar 

  9. Mann SP (1971) The innervation of mammalian bronchial smooth muscle: the localisation of catecholamines and cholinesterases. Histochem J 3: 319–331

    Article  PubMed  CAS  Google Scholar 

  10. Nadel JA (1980) Autonomic regulation of airway smooth muscle. In: Nadel JA (eds) Physiology and pharmacology of the airways. Marcel Dekker, New York, pp 217–257

    Google Scholar 

  11. Orehek J (1981) Neurohumoral control of airway caliber. In: Widdicombe JG (eds) International review of physiology. Respiratory physiology III. University Park Press, Baltimore, pp 1–74

    Google Scholar 

  12. Widdicombe JG (1985) Control of airway caliber. Am Rev Respir Dis 131 [Suppl]: 33–35

    Google Scholar 

  13. Widdicombe JG (1987) Nervous control of airway tone. In: Nadel JA, Snashall P, Paulwels R (eds) Bronchial hyperresponsiveness. Blackwell Scientific Publications, Oxford, pp 46–67

    Google Scholar 

  14. Doidge JM, Satchel DG (1982) Adrenergic and non-adrenergic inhibitory nerves in mammalian airways. J Auton Nery Syst 5: 83–99

    Article  CAS  Google Scholar 

  15. Richardson JB, Beland J (1976) Nonadrenergic inhibitory nervous system in human airways. J Appl Physiol 41: 764–771

    PubMed  CAS  Google Scholar 

  16. Partanen M, Laitinen A, Hervonen A, Toivanan M, Laitinen LA (1982) Catecholamine-and acetylcholinesterase-containing nerves in human lower respiratory tract. Histochemistry 76: 175–188

    Article  PubMed  CAS  Google Scholar 

  17. Laitinen A, Partanen M, Hervonen A, Laitinen LA (1985) Electromicroscopic study on the innervation of the human lower respiratory tract. Ecidence of adrenergic nerves. Eur J Respir Dis 67: 209–215

    PubMed  CAS  Google Scholar 

  18. Laitinen A, Partanen M, Hervonen A, Pelto-Juikko M, Laitinen LA (1985) VIP-like immunoreactive nerves in human respiratory tract. Histochemistry 82: 313–319

    Article  PubMed  CAS  Google Scholar 

  19. Said SI, Giachetti A, Nicosia S (1980) VIP: possible functions as a neural peptide. In: Costa E, Trabucchi M (eds) Neural peptides and neuronal communication. Raven Press, New York pp 75–82

    Google Scholar 

  20. Said SI, Kitamura S, Yoshida T, Preskitt J, Holden LD (1974) Humoral control of airways. Ann NY Acad Sci 221: 103–114

    Article  PubMed  CAS  Google Scholar 

  21. Richardson JB, Fergusson CC (1979) Neuromuscular structure and function in the airways. Fed Proc 38: 202–208

    PubMed  CAS  Google Scholar 

  22. Laitinen A (1985) Autonomic innervation of the human respiratory tracts as revealed by histochemical and ultrastructural methods. Eur J Respir Dis 66 [Suppl 140]: 1–42

    Google Scholar 

  23. Nadel JA (1991) Neutral endopeptidase modulates neurogenig inflammation. Eur Respir J 4: 745

    PubMed  CAS  Google Scholar 

  24. Hua X-Y, Theodorsson-Norheim E, Brodin E, Lundberg JM, Hokfelt T (1985) Multiple tachykinins (neurokinin A, neuropeptide K, and substance P) in capsaicin-sensitive sensory neurons in the guinea-pig. Regul Pept 13: 1–19

    Article  PubMed  CAS  Google Scholar 

  25. Borson DB, Corrales R, Varsano S, Gold M, Viro N, Caughey G, Ramachandran J, Nadel JA (1987) Enkephalinase inhibitors potentiate substance P-induced secretion of 35SO4-macromolecules from ferret trachea. Exp Lung Res 12: 21–36

    Article  PubMed  CAS  Google Scholar 

  26. Lundberg JM, Brodin E, Saria A (1983) Effects and distribition of vagal capsaicin-sensitive substance P neurons with special reference to the trachea and lungs. Acta Physiol Scand 119: 243–252

    Article  PubMed  CAS  Google Scholar 

  27. Saria A, Lundberg JM, Skofitsch G, Lembeck F (1983) Fascular protein leakage in various tissues induced by substance P, capsaicin, bradykinin, serotonin,histamine, and by antigen challenge. Naunyn Schmiedebergs Arch Pharmacol 324: 212–218

    Article  PubMed  CAS  Google Scholar 

  28. Lundberg JM, Saria A, Brodin E, Rosell S, Folkers K (1983) A substance P antagonist inhibits vagally induced increase in vascular permeability and bronchial smooth muscle contraction in the guinea-pig. Proc Natl Acad Sci USA 80: 1120–1124

    Article  PubMed  CAS  Google Scholar 

  29. McDonald DM (1988) Respiratory tract infections increase suscepptibility to neurogenic inflammation in the rat trachea. Am Rev Respir Dis 137: 1432–1440

    PubMed  CAS  Google Scholar 

  30. Umeno E, Nadel JA, Huang H-T, McDonald DM (1989) Inhibition of neural endopeptidase porentiatates neurgenic inflammation in the rat trachea. J Appl Physiol 66: 2647

    PubMed  CAS  Google Scholar 

  31. Pernow B (1985) Role of tachykinins in neurogenic inflammation. J Immunol 135: 812–815

    Google Scholar 

  32. Piotrowski W, Foreman JC (1985) On the action sof substance P, somatostatin, and vasoactive intestinal polypeptide on rat peritoneal mast cells and in human skin. Naunyn Schmiedebergs Arch Pharmacol 331: 364–368

    Article  PubMed  CAS  Google Scholar 

  33. Al-Bazzaz FJ, Kelsey JG, Kaage WD (1985) Substance P stimulation of chloride secretion ba canine tracheal mucosa. Am Rev Repir Dis 131: 86–89

    CAS  Google Scholar 

  34. Mizoguchi H, Hicks CR (1989) Effects of neurokinins o ion transport and sulfated macromolecule release in the isolated ferret trachea. Exp Lung Res 15: 837–848

    Article  PubMed  CAS  Google Scholar 

  35. Lundberg JM, Martling C-R, Saria A (1983) Substance P and capsaicin-induced contractin of human bronchi. Acta Physiol Scand 119: 49–53

    Article  PubMed  CAS  Google Scholar 

  36. Sewizawa K, Tamaoki J, Nadel JA, Borson DB (1987) Enkephalinase inhibitor potentiates substance P- and electrically induced contractino in ferret trachea. J Appl Physiol 63: 1401–1405

    Google Scholar 

  37. Sekizawa K, Tamaoki J, Graf PD, Basbaum CB, Borson DB, Nadel JA (1987) Enkephalinase inhibitor potentiates mammalian tachykinin-induced contraction in ferret trachea. J Pharmacol Exp Ther 243: 1211–1217

    PubMed  CAS  Google Scholar 

  38. Tanaka DT, Grunstein MM (1984) Mechanisms of substance P-induced contraction of rabbit airway smooth muscle. J Appl Physiol: Respirat Environ Exercise Physiol 57: 1551–1557

    CAS  Google Scholar 

  39. Kohrogi H, Graf PD, Sekizawa K, Borson DB, Nadel JA (1988) Neutral endopeptidase inhibitors potentiate substance P- and capsaicin-induced cough in awake guinea-pigs. J Clin Invest 82: 2063–2068

    Article  PubMed  CAS  Google Scholar 

  40. Kohrogi H, Nadel JA, Malfroy B, Gorman C, Bridenbauch R, Patton JS, Borson DB (1989) Recombinant human enkephalinase (neutral endopeptinase) prevents cough induced by tachykinins in awake guinea-pigs. J Clin Invest 84: 781–786

    Article  PubMed  CAS  Google Scholar 

  41. Skidgel RA, Engelbrecht A, Johnson AR, Erdos EG (1984) Hydrolysis of substance P and neurotensin by converting enzyme and neutral endoproteinase. Peptides 5: 769–776

    Article  PubMed  CAS  Google Scholar 

  42. Matsas R, Fulcher IS, Kenny AJ, Turner AJ (1983) Substance P and ( Leu)enkephalin are hydrolyzed by an enzyme in pig caudate synaptic membranes that is identical with the endopeptidase of kidney microvilli. Proc Natl Acad Sci USA 80: 3111–3115

    Article  PubMed  CAS  Google Scholar 

  43. Cascieri MA, Bull HG, Mumford RA, Patchett M, Thornberry NA, Liang T (1984) Carboxy-terminal tripeptidyl hydrolysis of substance P by purified rabbit lung angiotensin-converting enzyme and the potentiation of substance P activity in vivo by captopril and MK-422. Mol Pharmacol 25: 287–293

    PubMed  CAS  Google Scholar 

  44. Hanson GR, Lovenberg W (1980) Elevation of substance P-like immunoreactivity in rat central nervous system by protease inhibitors. J Neurochem 35: 1370–1374

    Article  PubMed  CAS  Google Scholar 

  45. Pernow B (1955) Inactivation of substance P by proteolytic enzymes. Acta Physiol Scand 34: 295–302

    Article  PubMed  CAS  Google Scholar 

  46. Caughey GH, Leidig F, Viro NF, Nadel JA (1988) Substance P and vasoactive intestinal peptide degradation by mast cell tryptase and chymase. J Pharmacol Exp Ther 244: 133–137

    PubMed  CAS  Google Scholar 

  47. Chubb IW, Hodgson AJ, White GH (1980) Acetylcholinesterase hydrolyzes substance R. Neuroscience 5: 2065–2072

    Article  PubMed  CAS  Google Scholar 

  48. Nausch I, Heymann E (1985) Substance P in human plasma is degraded by dipeptidyl peptidase IV, not by cholinesterase. J Neurochem 44: 1354–1357

    Article  PubMed  CAS  Google Scholar 

  49. Phipps RF (1981) The airway mucociliary system. In: Widdicombe JG (eds) International review of physiology. Respiratory physiology III. University Park Press, Baltimore, pp 213–260

    Google Scholar 

  50. Peatfield AC, Richardson PS (1983) Evidence for non-cholinergic non-adrenergic nervous control of muscus secretion in the cat trachea. J Physiol 342: 335–345

    PubMed  CAS  Google Scholar 

  51. Kneussl MP, Richardson JB (1978) Alpha-adrenergic receptors in human and canine tracheal and bronchial smooth muscle. J Appl Physiol 45: 307–311

    PubMed  Google Scholar 

  52. Kneussl MP, Kummer F (1984) Role of the parasympathic system in airway obstruction due to emphysema. N Eng J Med 311: 1379–1380

    Article  CAS  Google Scholar 

  53. Widdicombe JG (1963) Regulation of tracheobronchial smooth muscle. Physiol Rev 43: 1–371

    PubMed  CAS  Google Scholar 

  54. Widdicombe JG (1954) Receptors in the trachea and bronchi of the cat. J Physiol 123: 71–104

    PubMed  CAS  Google Scholar 

  55. Laitinen LA, Laitinen A (1987) Innervation of airway smooth muscle. Am Rev Respir Dis 136: 38–42

    Google Scholar 

  56. Uddman R, Sundler F (1979) Vasoactive intestinal peptide nerves in human upper respiratory tract. Otorhinolaryngology 41: 221–226

    CAS  Google Scholar 

  57. Lundberg JM, Hokfelt T, Kewenter J, Peterson G, Ahlman H, Towin R, Dahlstrom A, Nilsson G, Terenius L, Uvnas-Wallensten K, Said DI (1979) Substance P-, VIP-, and enkephalinlike immunoreactivity in the human vagus nerve. Gastroenterology 77: 468–471

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag/Wien

About this paper

Cite this paper

Kneußl, M. (1992). Interaktion von Vagus und Sympathikus im Tracheo-Bronchialsystem. In: Kummer, F. (eds) Das cholinerge System der Atemwege. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9208-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9208-5_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82341-5

  • Online ISBN: 978-3-7091-9208-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics