Skip to main content

Possible mechanisms underlying hyperexcitability in the epileptic mutant mouse tottering

  • Conference paper
Generalized Non-Convulsive Epilepsy: Focus on GABA-B Receptors

Part of the book series: Journal of Neural Transmission ((NEURAL SUPPL,volume 35))

Summary

Tottering mice present a useful experimental model of genetically determined generalized epilepsy of the absence type. In electrophysiological recordings from hippocampal slices in vitro we found that the postsynaptic excitability (firing threshold) of pyramidal neurons in the CA1 area of tg/tg slices was significantly higher than that of normal slices. In spite of this hyperexcitability, in vitro epileptiform discharges were not observed spontaneously, or upon provocation by intracellular depolarizing pulses, or in response to moderate elevations (+2 mM) in extracellular potassium. The latter elevations actually induced significantly smaller increases in the CA1 synaptic responses of tg/tg as compared to normal slices. The hyperexcitability of tottering neurons could not be explained in terms of altered membrane electrical properties or any reduction of synaptic inhibition or increased capacity for long-term potentiation. Responses to noradrenaline, histamine and adenosine, as well as to the release of N-methyl-D-asparate channels — by eliminating Mg2+ — were comparable in tg/tg and normal slices. These studies show that hyperexcitability can be co-inherited with epilepsy and in this model its expression can be maintained in vitro. The neuronal mechanism of this expression remains elusive, as it does not appear to include some features known to be shared by experimental models of chemically or electrically induced epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angelatou F, Pagonopoulou O, Kostopoulos G (1990) Alterations of Al adenosine receptors in different mouse brain areas after pentylentetrazol-induced seizures but not in the epileptic mutant mouse tottering. Brain Res 534: 251–256

    Article  PubMed  CAS  Google Scholar 

  • Avoli M, Gloor P, Kostopoulos G, Naquet R (eds) (1990) Generalized epilepsy: neurobiological approaches. Birkhäuser, Boston

    Google Scholar 

  • Avoli M, Hwa GGC, Drapeau G, Kostopoulos G, Perreault P, Olivier A, Villemeure J-G (1992) Electrophysiological analysis of human neocortex in vitro: experimental techniques and methodological approaches. Can J Neurol Sci (in press)

    Google Scholar 

  • Ben-Ari Y, Krnjevic K, Reinhardt W (1979) Hippocampal seizures and failure of inhibition. Can J Physiol Pharmacol 57: 1462–1466

    Article  CAS  Google Scholar 

  • Bliss TVP (1990) Maintainance is presynaptic. Nature 346: 698–699

    Article  PubMed  CAS  Google Scholar 

  • Bliss TVP, Lynch MA (1988) Long-term potentiation of synaptic transmission in the hippocampus: properties and mechanisms. In: Landfield PW, Deadwyller PW (eds) Long-term potentiation: from biophysics to behavior. Alan R Liss, New York, pp 3–72

    Google Scholar 

  • Buzsaki G (1984) Feed-forward inhibition in the hippocampal formation. Prog Neurobiol 22: 131–153

    Article  PubMed  CAS  Google Scholar 

  • Cain DP (1989) Long-term potentiation and kindling: how similar are the mechanisms? TINS 12 (1): 6–10

    PubMed  CAS  Google Scholar 

  • Collingridge GL, Bliss TVP (1987) NMDA receptors — their role in long-term potentiation. Trends Neurosci 10: 288–293

    Article  CAS  Google Scholar 

  • Dingledine R, Gjerstad L (1980) Reduced inhibition during epileptiform activity in the in vitro hippocampal slice. J Physiol (Lond) 305: 297–313

    CAS  Google Scholar 

  • Dingledine R, Hynes MA, King GL (1986) Involvement of N-methyl-D-aspartate receptors in epileptiform bursting in the rat hippocampal slice. J Physiol (Lond) 380: 175–189

    CAS  Google Scholar 

  • Dragunow M (1988) Purinergic mechanisms in epilepsy. Prog Neurobiol 31: 85–108 Ganetsky B, Wu C-F (1985) Genes and membrane excitability in Drosophila. Trends Neurosci 8: 322–326

    Google Scholar 

  • Gloor P, Fariello RG (1988) Generalized epilepsy: some of its cellular mechanisms differ from those of focal epilepsy. Trends Neurosci 11 (2): 63–68

    Article  PubMed  CAS  Google Scholar 

  • Gloor P, Metrakos J, Metrakos K, Andermann E, van Gelder N (1982) Neurophysiological, genetic and biochemical nature of the epileptic diathesis. Electroencephalogr Clin Neurophysiol [Suppl 35]: 45–56

    Google Scholar 

  • Gloor P, Avoli M, Kostopoulos G (1990) Thalamocortical relationships in generalized epilepsy with bilaterally synchronous spike-and-wave discharge. In: Avoli M, Gloor P, Kostopoulos G, Naquet R (eds) Generalized epilepsy: neurobiological approaches. Birkhäuser, Boston, pp 190–212

    Google Scholar 

  • Haas HL, Rose G (1984) The role of inhibitory mechanisms in hippocampal long-term potentiation. Neurosci Lett 47: 301–306

    Article  PubMed  CAS  Google Scholar 

  • Hemmendinger LM, Moore RY (1983) Synaptic reorganization in rat motor trigeminal nucleus following neonatal 6-hydroxy-dopamine treatment. Soc Neurosci Abstr 9: 988

    Google Scholar 

  • Hopkins WF, Johnston D (1988) Noradrenergic enhancement of long-term potentiation at mossy fiber synapses in the hippocampus. J Neurophysiol 59 (2): 667–687

    PubMed  CAS  Google Scholar 

  • Jackson JH (1931) Selected writings of John Hughlings Jackson, vol 1. On epilepsy and epileptiform convulsions (edited by Taylor J). Hodder and Stroughton, London, p 500

    Google Scholar 

  • Jasper HH, van Gelder NM (eds) (1983) Basic mechanisms of neuronal hyperexcitability. Alan R Liss, New York, pp 495

    Google Scholar 

  • Jonzon B, Fredholm BB (1984) Adenosine receptor mediated inhibition of nor- adrenaline release from slices of the rat hippocampus. Life Sci 35: 1971–1979

    Article  PubMed  CAS  Google Scholar 

  • Kahn SU, Wilson CL, Isokawa-Akesson M, Babb TL, Levesque MF (1989) Increased paired-pulse inhibition in the epileptogenic human temporal lobe. Soc Neurosci Abstr 15 (1): 236

    Google Scholar 

  • Kaplan BJ, Seyfred TN, Glaser GH (1979) Spontaneous polyspike discharges in an epileptic mutant mouse (tottering). Exp Neurol 66: 577–586

    Article  PubMed  CAS  Google Scholar 

  • Kapur J, Lothman EW (1989) Loss of inhibition precedes delayed spontaneous seizures in the hippocampus after tetanic electrical stimulation. J Neurophysiol 61 (2): 427–434

    PubMed  CAS  Google Scholar 

  • King GL, Dingledine R, Giachinno JL, McNamara JO (1985) Abnormal neuronal excitability in hippocampal slices from kindled rats. J Neurophysiol 54(5): 1295–1304

    PubMed  CAS  Google Scholar 

  • Kostopoulos G (1988) Adenosine: a molecule for synaptic homeostasis? In: Avoli M, Reader TA, Dykes RW, Gloor P (eds) Neurotransmitters and cortical function. Plenum Press, New York, pp 415–435

    Chapter  Google Scholar 

  • Kostopoulos G (1992) The tottering mouse: a critical review of its usefulness in the study of the neuronal mechanisms underlying epilepsy (this volume)

    Google Scholar 

  • Kostopoulos G, Psarropoulou C (1990) Increased postsynaptic excitability in hippo- campal slices from the tottering epileptic mutant mouse. Epilepsy Res 6: 49–55

    Article  PubMed  CAS  Google Scholar 

  • Kostopoulos G, Gloor P, Pellegrini A, Gotman J (1981) A study of the transition from spindles to spike and wave discharge in feline generalized penicillin epilepsy: microphysiological features. Exp Neurol 73: 55–77

    Article  PubMed  CAS  Google Scholar 

  • Kostopoulos G, Avoli M, Gloor P (1983) Participation of cortical recurrent inhibition in the genesis of spike and wave discharges in feline generalized penicillin epilepsy. Brain Res 227: 101–112

    Article  Google Scholar 

  • Kostopoulos G, Veronikis DK, Efthimiou I (1987) Caffeine blocks absence seizures in the tottering mutant mouse. Epilepsia 28 (4): 415–420

    Article  PubMed  CAS  Google Scholar 

  • Kostopoulos G, Psarropoulou C, Haas H (1988) Membrane properties, response to amines and to tetanic stimulation of hippocampal neurons in the genetically epileptic mutant mouse tottering. Exp Brain Res 72: 45–50

    Article  PubMed  CAS  Google Scholar 

  • Krnjevic K (1983) GABA — mediated inhibitory mechanisms in relation to epileptic discharges. In: Jasper HH, Van Gelder NM (eds) Basic mechanisms of neuronal hyperexcitability. Alan R Liss, New York, pp 249–280

    Google Scholar 

  • Levitt P, Noebels JL (1981) Mutant mouse tottering: selective increase of locus coeruleus axons in a defined single-locus mutation. Proc Natl Acad Sci U.S.A. 78: 4630–4634

    Article  PubMed  CAS  Google Scholar 

  • Levitt P, Law C, Pylypiw A, Ross LL (1984) Central adrenergic receptors in the inherited noradrenergic hyperinnervated mutant mouse tottering. Neurosci Abstr 10: 179

    Google Scholar 

  • Lopes da Silva FH (1987) Hippocampal kindling: physiological evidence for progressive inhibition. Adv Epileptol 16: 57–62

    Google Scholar 

  • Madison DV, Nicoll RA (1988) Noradrenaline decreases synaptic inhibition in the rat hippocampus. Brain Res 442: 131–138

    Article  PubMed  CAS  Google Scholar 

  • Malouf AT, Robbins CA, Schwartzkroin PA (1990) Epileptiform activity in hippocampal slice cultures with normal inhibitory synaptic drive. Neurosci Lett 108: 76–80

    Article  PubMed  CAS  Google Scholar 

  • McCarren M, Alger BE (1985) Use-dependent depression of IPSPs in rat hippocampal pyramidal cells in vitro. J Neurophysiol 53: 557–571

    PubMed  CAS  Google Scholar 

  • McIntyre DC, Wong RKS (1986) Cellular and synaptic properties of amygdala-kindled pyriform cortex in vitro. J Neurophysiol 55: 1295–1307

    PubMed  CAS  Google Scholar 

  • Meldrum BS, Croucher MJ, Badman C, Collins JS (1983) Antiepileptic action of excitatory amino acid antagonists in the photosensitive baboon, Papio papio. Neurosci Lett 39: 101–104

    Article  PubMed  CAS  Google Scholar 

  • Mody I, Stanton PK, Heinemann U (1988) Activation of N-methyl-D-aspartate receptors parallels changes in cellular and synaptic properties of dentate gyrus granule cells after kindling. J Neurophysiol 59: 1033–1054

    PubMed  CAS  Google Scholar 

  • Newberry NR, Nicoll RA (1984) A bicucculine-resistant inhibitory post-synaptic potential in rat hippocampal pyramidal cells in vitro. J Physiol (Lond) 348: 239–254

    CAS  Google Scholar 

  • Noebels JL, Sidman RL (1979) Inherited epilepsy: spike-wave and focal motor seizures in the mutant mouse tottering. Science 204: 1334–1336

    Article  PubMed  CAS  Google Scholar 

  • Noebels JL (1984) A single gene error of noradrenergic axon growth synchronizes central neurons. Nature 310: 409–411

    Article  PubMed  CAS  Google Scholar 

  • Noebels JL, Rutecki PA (1990) Altered hippocampal network excitability in the hypernoradrenergic mutant mouse tottering. Brain Res 524: 225–230

    Article  PubMed  CAS  Google Scholar 

  • Olpe H-R (1982) The locus coeruleus as a target for the activating action of vincamine, nicotine and caffeine. Experientia 38: 757

    Google Scholar 

  • Poolos NP, Mauk MD, Kocsis JD (1987) Activity-evoked increases in extracellular potassium modulate presynaptic excitability in the CA1 region of the hippocampus. J Neurophysiol 58: 404–416

    PubMed  CAS  Google Scholar 

  • Prince DA, Connors BW (1986) Mechanisms of interictal epileptogenesis. In: DelgadoEsqueta A, et al (eds) Advances in neurology, vol 44. Raven, New York, pp 275–299

    Google Scholar 

  • Psarropoulou C, Kostopoulos G (1990) Long term enhancement of post synaptic excitability after brief exposure to Mg2+ free medium in normal and epileptic mice. Brain Res 508: 70–75

    Article  PubMed  CAS  Google Scholar 

  • Psarropoulou C, Angelatou F, Matsokis N, Veronikis DK, Kostopoulos G (1987) Absence of modification in GABA and benzodiazepine binding and in choline acetyltransferase activity in brain areas of the epileptic mutant mouse tottering. Gen Pharmacol 18 (6): 593–597

    Article  PubMed  CAS  Google Scholar 

  • Schwartzkroin PA, Prince DA (1980) Changes in excitatory and inhibitory synaptic potentials leading to epileptogenic activity. Brain Res 183: 61–76

    Article  PubMed  CAS  Google Scholar 

  • Shefner SA, Chiu TH (1986) Adenosine inhibits locus coeruleus neurons: an intracellular study in a rat brain slice preparation. Brain Res 366: 364–368

    Article  PubMed  CAS  Google Scholar 

  • Somjen GG (1979) Extracellular potassium in the central nervous system. Ann Rev Physiol 41: 159–177

    Article  CAS  Google Scholar 

  • Spencer WA, Kandel ER (1969) Synaptic inhibition in seizures. In: Jasper HH, Ward AA, Pope A (eds) Basic mechanisms of the epilepsies. Little, Brown and Co, Boston, pp 575–603

    Google Scholar 

  • Stanfield BB (1989) Excessive intra-and supragranular mossy fibers in the dentate gyrus of tottering (tg/tg) mice. Brain Res 480: 294–299

    Article  PubMed  CAS  Google Scholar 

  • Tancredi V, Avoli M (1987) Control of spontaneous epileptiform discharges by extracellular potassium. An “in vitro” study in the CA1 subfield of the hippocampal slice. Exp Brain Res 67: 363–372

    Article  PubMed  CAS  Google Scholar 

  • Taylor-Courval D, Gloor P (1984) Behavioural alterations associated with generalized spike and wave discharges in the EEG of the cat. Exp Neurol 83: 167–186

    Article  PubMed  CAS  Google Scholar 

  • Traynellis SF, Dingledine R (1988) Potassium-induced spontaneous electrographic seizures in the rat hippocampal slice. J Neurophysiol 59 (1): 259–276

    Google Scholar 

  • Tuff LP, Racine RJ, Adamec R (1983) The effect of kindling on GABA-mediated inhibition in the dentate gyrus of the rat. I. Paired -pulse depression. Brain Res 277: 79–90

    Article  PubMed  CAS  Google Scholar 

  • Vornov JJ, Sutin J (1986) Noradrenergic hyperinnervation of motor trigeminal nucleus: alterations in membrane properties and response to synaptic input. J Neurosci 6 (1): 30–37

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag

About this paper

Cite this paper

Kostopoulos, G.K., Psarropoulou, C.T. (1992). Possible mechanisms underlying hyperexcitability in the epileptic mutant mouse tottering. In: Marescaux, C., Vergnes, M., Bernasconi, R. (eds) Generalized Non-Convulsive Epilepsy: Focus on GABA-B Receptors. Journal of Neural Transmission, vol 35. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9206-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9206-1_8

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82340-8

  • Online ISBN: 978-3-7091-9206-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics