Responses to N-methyl-D-aspartate are enhanced in rats with Petit Mal-like seizures

  • R. Pumain
  • J. Louvel
  • M. Gastard
  • I. Kurcewicz
  • M. Vergnes
Part of the Journal of Neural Transmission book series (NEURAL SUPPL, volume 35)


The responses to the glutamate agonist N-methyl-D-aspartate (NMDA) were studied in the sensori-motor cortex of rats with petit mal-like seizures. In a first study, the changes in extracellular concentration of calcium elicited through ionophoretic application of NMDA at various depths in the cortex were measured in vivo. The results show that in the cortex of epileptic rats the NMDA responses are much more widely distributed than in the cortex of control rats. In a second study, a current-source density analysis of the responses elicited through electrical stimulation of the white matter was performed in slices of neocortex in vitro. These findings show that the NMDA-dependent component of the synaptic responses are more widely distributed and of longer duration in the cortex of epileptic rats than in that of control rats. Taken together, these results suggest that in this model of absence epilepsy NMDA-dependent mechanisms are important in the triggering and maintenance of epileptic activity.


Generalize Epilepsy Synaptic Response Stimulus Artefact Current Sink NMDA Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbes S, Louvel J, Lamarche M, Pumain R (1991) Laminar analysis of the origin of the various components of evoked potentials in slices of rat sensory motor cortex. Electroencephalogr Clin Neurophysiol 80: 310–320PubMedCrossRefGoogle Scholar
  2. Ammann D (1985) Ion-selective microelectrodes. Springer, Berlin Heidelberg New York Tokyo, p 346Google Scholar
  3. Anderson WW, Lewis DV, Swartzwelder HS, Wilson WA (1986) Magnesium-free medium activates seizure-like events in the rat hippocampal slice. Brain Res 398: 215–219PubMedCrossRefGoogle Scholar
  4. Ascher P, Nowak L (1988a) Quisqualate-and kainate-activated channels in mouse central neurones in culture. J Physiol 399: 227–245PubMedGoogle Scholar
  5. Ascher P, Nowak L (1988b) The role of divalent cations in the N-methyl-D-aspartate responses of mouse central neurones in culture. J Physiol 399: 247–266PubMedGoogle Scholar
  6. Avoli M, Louvel J, Pumain R, Olivier A (1987) Seizure-like discharges induced by lowering [Mg2+]o in the human epileptogenic neocortex maintained in vitro. Brain Res 417: 199–203PubMedCrossRefGoogle Scholar
  7. Avoli M, Gloor P, Kostopoulos (1990) Focal and generalized epileptiform activity in the cortex: in search of differences in synaptic mechanisms, ionic movements, and long-lasting changes in neuronal excitability. In: Avoli M, Gloor P, Kostopoulos G, Naquet R (eds) Generalized epilepsy. Neurobiological approaches. Birkhäuser, Boston Basel Berlin, pp 238–253Google Scholar
  8. Croucher MJ, Collins JF, Meldrum BS (1982) Anticonvulsant action of excitatory amino acid antagonists. Science 216: 899–901PubMedCrossRefGoogle Scholar
  9. Freeman JA, Nicholson C (1975) Experimental optimization of current-source density technique for anuran cerebellum. J Neurophysiol 38: 369–382PubMedGoogle Scholar
  10. Heinemann U, Konnerth A, Pumain R, Wadman WJ (1986) Extracellular calcium and potassium concentration changes in chronic epileptic brain tissue. Adv Neurol 44: 641–661PubMedGoogle Scholar
  11. Louvel J, Pumain R, Roux FX, Chodkievicz JP (1992) Recent advances in understanding epileptogenesis in animal models and in humans. Adv Neurol 57: 517–524PubMedGoogle Scholar
  12. Lux HD, Neher E (1973) The equilibration time course of [K+]0 in cat cortex. Exp Brain Res 17: 190–205PubMedCrossRefGoogle Scholar
  13. MacDermott AB, Mayer ML, Westbrook GL, Smith SJ, Barker JL (1986) NMDAreceptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones. Nature 321: 519–522PubMedCrossRefGoogle Scholar
  14. Marescaux C, Micheletti G, Vergnes M, Depaulis A, Rumbach L, Warter JM (1984) A model of chronic spontaneous petit mal-like seizures in the rat: comparison with pentylenetetrazol-induced seizures. Epilepsia 25: 326–331PubMedCrossRefGoogle Scholar
  15. Marescaux C, Vergnes M, Micheletti G (1984) Antiepileptic drug evaluation in a new animal model: spontaneous petit mal epilepsy in the rat. Fed Proc 43280: 280–281Google Scholar
  16. Mayer ML, Westbrook GL (1987) The physiology of excitatory amino acids in the vertebrate central nervous system. Prog Neurobiol 28: 197–276PubMedCrossRefGoogle Scholar
  17. Mayer ML, Westbrook GL (1988) Permeation and block of N-methyl-D-aspartic acid receptor channels by divalent cations in mouse cultured central neurones. J Physiol 394: 501–527Google Scholar
  18. Mayer ML, Westbrook GL, Guthrie PB (1984) Voltage-dependent block by Mgt+ of NMDA responses in spinal cord neurones. Nature 309: 261–263PubMedCrossRefGoogle Scholar
  19. Meldrum BS, Croucher MJ, Cuczwar, SJ, et al (1983) A comparison of the anticonvulsivant potency of +2-amino-5-phosphonopentanoic acid and +2-amino-7phosphonoheptanoic acid. Neuroscience 9: 925–930PubMedCrossRefGoogle Scholar
  20. Mitzdorf U (1985) Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiol Rev 65: 37–100PubMedGoogle Scholar
  21. Mitzdorf U, Singer W (1978) Prominent excitatory pathways in the cat visual cortex (A 17 and A 18): a current source density analysis of electrically evoked potentials. Exp Brain Res 33: 371–394PubMedCrossRefGoogle Scholar
  22. Mitzdorf U, Singer W (1979) Excitatory synaptic ensemble properties in the visual cortex of the macaque monkey: a current source density analysis of electrically evoked potentials. J Comp Neurol 187: 71–84PubMedCrossRefGoogle Scholar
  23. Mody I, Stanton PK, Heinemann U (1988) Activation of N-methyl-D-aspartate receptors parallels changes in cellular and synaptic properties of dentate gyrus granule cells after kindling. J Neurophysiol 59: 1033–1054PubMedGoogle Scholar
  24. Nicholson C, Freeman JA (1975) Theory of current-source density analysis and determination of conductivity sensor for anuran cerebellum. J Neurophysiol 38: 356–368PubMedGoogle Scholar
  25. Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A (1984) Magnesium gates glutamate-activated channels in mouse central neurons. Nature 307: 462–465PubMedCrossRefGoogle Scholar
  26. Pumain R, Heinemann U (1985) Stimulus-and amino-acid induced calcium and potassium changes in rat neocortex. J Neurophysiol 53: 1–16PubMedGoogle Scholar
  27. Pumain R, Menini C, Heinemann U, Louvel J, Silva-Barrat C (1985) Chemical synaptic transmission is not necessary for epileptic seizures to persist in the baboon Papio papio. Exp Neurol 89: 250–258PubMedCrossRefGoogle Scholar
  28. Pumain R, Louvel J, Kurcewicz I (1986) Ionic concomitants in chronic epilepsies. In: Speckmann E-J, Schulze H, Walden J (eds) Epilepsy and calcium. Urban and Schwarzenberg, München Wien Baltimore, pp 207–225Google Scholar
  29. Pumain R, Kurcewicz I, Louvel J (1987) Ionic changes induced by excitatory amino acids in the rat cerebral cortex. Can J Physiol Pharmacol 65: 1067–1077PubMedCrossRefGoogle Scholar
  30. Richardson TL, Turner RW, Miller JJ (1987) Action potential discharge in hippocampal CAl pyramidal neurons: current source-density analysis. J Neurophysiol 58: 981–996PubMedGoogle Scholar
  31. Stanton PK, Jones RSG, Mody I, Heinemann U (1987) Epileptiform activity induced by lowering extracellular [Mg2+] in combined hippocampal-enthorhinal cortex slices: modulation by receptors for norepinephrine and N-methyl-D-aspartate. Epilepsy Res 1: 53–62PubMedCrossRefGoogle Scholar
  32. Vergnes M, Marescaux C, Micheletti G, et al (1982) Spontaneous paroxysmal electroclinical patterns in rat: a model of generalized non-convulsive epilepsy. Neurosci Lett 33: 97–101PubMedCrossRefGoogle Scholar
  33. Vergnes M, Marescaux C, Depaulis A, Micheletti G, Warter JM (1987) Spontaneous spike and wave discharges in thalamus and cortex in a rat model of genetic petit mal-like seizures. Exp Neurol 96: 127–136PubMedCrossRefGoogle Scholar
  34. Vergnes M, Marescaux C, Depaulis A, Micheletti G, Warter JM (1990) Spontaneous spike-and-wave discharges in Wistar rats: a model of genetic generalized nonconvulsive epilepsy. In: Avoli M, Gloor P, Kostopoulos G, Naquet R (eds) Generalized epilepsy. Neurobiological approaches. Birkhäuser, Boston Basel Berlin, pp 238–253Google Scholar
  35. Walther, H, Lambert JDC, Jones RSG, Heinemann U, Hamon B (1986) Epileptiform activity in combined slices of the hippocampus, subiculum and entorhinal cortex during perfusion with low magnesium medium. Neurosci Lett 69: 156–161PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • R. Pumain
    • 1
    • 3
  • J. Louvel
    • 1
  • M. Gastard
    • 1
  • I. Kurcewicz
    • 1
  • M. Vergnes
    • 2
  1. 1.Unité de Recherches sur l’EpilepsieINSERM U 97ParisFrance
  2. 2.Département de Neurophysiologie et de Biologie des ComportementsCentre de Neurochimie du CNRSStrasbourgFrance
  3. 3.Unité de Recherches sur l’EpilepsieINSERM U 97ParisFrance

Personalised recommendations