Role of the thalamic reticular nucleus in the generation of rhythmic thalamo-cortical activities subserving spike and waves

  • G. Avanzini
  • M. de Curtis
  • C. Marescaux
  • F. Panzica
  • R. Spreafico
  • M. Vergnes
Part of the Journal of Neural Transmission book series (NEURAL SUPPL, volume 35)


The role of the reticular thalamic nucleus (RTN) in pacing rhythmic cortical activities subserving spike-waves (SW) discharges has been investigated in rats.

Intracellular recordings from thalamic slices in vitro demonstrated that RTN neurons from control animals possess a set of Ca2+/K+ membrane conductances which enable them to produce rhythmic oscillatory activities.

In vivo, studies of Ca2+-conductance blockade by intrathalamic injections of Cd2+ were performed on 24 callosotomized Wistar rats displaying spontaneous SW discharges, bred at the Centre de Neurochimie, Strasbourg. A significant decrement in ipsilateral SW activity was consistently observed in all RTN-injected animals 40 min after Cd2+ injection. By contrast, animals which received Cd2+ injection into the ventroposterior complex (VP) showed only small changes in ipsilateral SW. It is concluded that Ca2+-dependent oscillatory properties of the RTN are critical for the expression of genetically determined SW discharges in the Wistar model.


Current Pulse Intracellular Recording Generalize Epilepsy Reticular Thalamic Nucleus Neuron Injection Cannulae 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Avanzini G, de Curtis M, Panzica F, Spreafico R (1989) Intrinsic properties of nucleus reticularis thalami neurones of the rat studied in vitro. J Physiol 416: 111–122PubMedGoogle Scholar
  2. Avanzini G, de Curtis M, Spreafico R (1992) Physiological properties of GABAergic thalamic reticular neurons studied in vitro. Relevance to thalamo-cortical synchronizing mechanisms. In: Avanzini G, Fariello R, Heinemann U, Engel J (eds) Neurotransmitters in epilepsy. Elsevier, Amsterdam (in press)Google Scholar
  3. Avanzini G, Vergnes M, Spreafico R, Marescaux C (1992) Calcium dependent regulation of genetically determined spike and waves by the reticular thalamic nucleus of rats. Epilepsia (submitted )Google Scholar
  4. Ben Ari Y, Dingledine R, Kanazawa I, Kelly JS (1976) Inhibitory effects of acetylcholine on neurons in the feline nucleus reticularis thalami. J Physiol 261: 647–671Google Scholar
  5. de Curtis M, Spreafico R, Avanzini G (1989) Excitatory amino acids mediate responses elicited in vitro by stimulation of cortical afferents to reticularis thalami neurons of the rat. Neuroscience 33: 275–283PubMedCrossRefGoogle Scholar
  6. Depaulis A, Vergnes M, Marescaux C, Lannes B, Warter JM (1988) Evidence that activation of GABA receptors in the substantia nigra suppresses spontaneous spike-and-wave discharges in the rat. Brain Res 448: 20–29PubMedCrossRefGoogle Scholar
  7. Deschenes M, Paradis M, Roy JP, Steriade M (1984) Electro-physiology of neurons of lateral thalamic nuclei in cat: resting properties and burst discharges. J Neurophysiol 51: 1196–1219PubMedGoogle Scholar
  8. Gloor P, Fariello R (1988) Generalized epilepsy: some of its cellular mechanisms differ from those of focal epilepsy. Trends Neurosci 11: 63–68PubMedCrossRefGoogle Scholar
  9. Jansen H, Llinas R (1984a) Electrophysiological properties of guinea-pig thalamic neurones: an in vitro study. J Physiol 349: 205–226Google Scholar
  10. Jansen H, Llinas R (1984b) Ionic basis for the electro-responsiveness and oscillatory properties of guinea-pig thalamic neurones in vitro. J Physiol 349: 227–247Google Scholar
  11. Jones EG (1975) Some aspects of the organization of the thalamic reticular complex. J Comp Neurol 162: 285–308PubMedCrossRefGoogle Scholar
  12. Kayama Y, Sumimoto I, Ogawa T (1986) Does the ascending cholinergic projection inhibit or excite neurons in the rat thalamic reticular nucleus? J Neurophysiol 56: 1310–1320PubMedGoogle Scholar
  13. Marescaux C, Vergnes M, Depaulis A, Micheletti G, Warter JM (1992) Neurotransmission in rats’ spontaneous generalized non convulsive epilepsy. In: Avanzini G, Fariello R, Heinemann U, Engel J (eds) Neurotransmitters in epilepsy. Elsevier, Amsterdam (in press)Google Scholar
  14. McCormick DA, Prince DA (1986) Acteylcholine induces burst firing in thalamic reticular neurons by activating a potassuim conductance. Nature 319: 402–405PubMedCrossRefGoogle Scholar
  15. McCormick DA, Prince DA (1988) Noradrenergic modulation of firing pattern in guinea pig and thalamic neurons, in vitro. J Neurophysiol 59: 978–996PubMedGoogle Scholar
  16. Mulle C, Madariaga A, Deschenes M (1986) Morphology and electro-physiological properties of reticularis thalami neurons in cat: in vivo study of a thalamic pacemaker J Neurosci 6: 2134–2145Google Scholar
  17. Spreafico R, de Curtis M, Frassoni C, Avanzini G (1988) Electro-physiological characteristics of morphologically identified reticular thalamic neurons from rat slices. Neuroscience 27: 629–638PubMedCrossRefGoogle Scholar
  18. Steriade M, Deschenes M (1984) The thalamus as a neuronal oscillator. Brain Res Rev 8: 1–62CrossRefGoogle Scholar
  19. Steriade M, Dominich L, Oakson G (1986) Reticularis thalami neurons revisited: activity changes during shifts in state of vigilance. J Neurosci 6: 68–81PubMedGoogle Scholar
  20. Steriade M, Dominich L, Oakson G, Deschenes M (1987) The deafferented reticularis thalami nucleus generates spindles rhythmicity. J Neurophysiol 57: 260–273PubMedGoogle Scholar
  21. Vergnes M, Marescaux C (1992) Cortical and thalamic lesions in rats with genetic absence epilepsy (this volume)Google Scholar
  22. Vergnes M, Marescaux C, Micheletti G, Reis J, Depaulis A, Rumbach L, Warter JM (1982) Spontaneous paroxysmal electroclinical patterns in rat: a model of generalized non-convulsive epilepsy. Neurosci Lett 33: 97–101PubMedCrossRefGoogle Scholar
  23. Vergnes M, Marescaux C, Micheletti G, Depaulis A, Rumbach L, Warter JM (1984) Enhancement of spike and wave discharges by GABA-mimetic drugs in rats with spontaneous petit mal-like epilepsy. Neurosci Lett 44: 91–94PubMedCrossRefGoogle Scholar
  24. Vergnes M, Marescaux C, Lannes B, Depaulis A, Micheletti G, Warter JM (1989) Interhemispheric desynchronization of spontaneous spike-wave discharges by corpus callosum transection in rats with petit mal-like epilepsy. Epilepsy Res 4: 8–13PubMedCrossRefGoogle Scholar
  25. Vergnes M, Marescaux C, Depaulis, A, Micheletti G, Warter JM (1990) Spontaneous spike-and-wave discharges in Wistar rats: a model of genetic generalized convulsive epilepsy. In: Avoli M, Gloor P, Kostopoulos G, Naquet R (eds) Generalized epilepsy. Neurobiological approaches. Birkhäuser, Boston, pp 238–253Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • G. Avanzini
    • 1
    • 4
  • M. de Curtis
    • 1
  • C. Marescaux
    • 2
  • F. Panzica
    • 1
  • R. Spreafico
    • 1
  • M. Vergnes
    • 3
  1. 1.Istituto Neurologico C. BestaMilanoItaly
  2. 2.Clinique Neurologique de l’Université de StrasbourgStrasbourgFrance
  3. 3.Centre de Neurochimie du CNRSStrasbourgFrance
  4. 4.Laboratory of NeurophysiologyIstituto Neurologico C. BestaMilanoItaly

Personalised recommendations