Advertisement

Genetic absence epilepsy in rats from Strasbourg — A review

  • C. Marescaux
  • M. Vergnes
  • A. Depaulis
Part of the Journal of Neural Transmission book series (NEURAL SUPPL, volume 35)

Summary

We have selected a strain of rats and designated it the Genetic Absence Epilepsy Rat from Strasbourg (GAERS). In this strain, 100% of the animals present recurrent generalized non-convulsive seizures characterized by bilateral and synchronous spike-and-wave discharges accompanied with behavioural arrest, staring and sometimes twitching of the vibrissae. Spontaneous SWD (7–11 cps, 300–1,000 µV, 0.5–75 sec) start and end abruptly on a normal background EEG. They usually occur at a mean frequency of 1.5 per min when the animals are in a state of quiet wakefulness. Drugs effective against absence seizures in humans (ethosuccimide, trimethadione, valproate, benzodiazepines) suppress the SWD dose-dependently, whereas drugs specific for convulsive or focal seizures (carbamazepine, phenytoin) are ineffective. SWD are increased by epileptogenic drugs inducing petit mal-like seizures, such as pentylenetetrazol, gamma-hydroxybutyrate, THIP and penicillin.

Depth EEG recordings and lesion experiments show that SWD in GAERs depend on cortical and thalamic structures with a possible rhythmic triggering by the lateral thalamus. Most neurotransmitters are involved in the control of SWD (dopamine, noradrenaline, NMDA, acetylcholine), but GABA and gamma-hydroxybutyrate (GHB) seem to play a critical role. SWD are genetically determined with an autosomal dominant inheritance. The variable expression of SWD in offsprings from GAERS × control reciprocal crosses may be due to the existence of multiple genes.

Neurophysiological, behavioural, pharmacological and genetic studies demonstrate that spontaneous SWD in GAERS fulfil all the requirements for an experimental model of absence epilepsy. As the mechanisms underlying absence epilepsy in humans are still unknown, the analysis of the genetic thalamocortical dysfunction in GAERS may be fruitful in investigations of the pathogenesis of generalized non-convulsive seizures.

Keywords

GABAB Receptor Absence Seizure Absence Epilepsy Convulsive Seizure Wave Discharge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aicardi J (1986) Epilepsy in children. Raven Press, New YorkGoogle Scholar
  2. Albe-Fessard D, Lombard MC (1983) Use of an animal model to evaluate the origin of and protection against deafferentation pain. In: Bonica JJ (ed) Advances in pain research and therapy, vol 5. Raven Press, New York, pp 691–700Google Scholar
  3. Aldino C, Aporti F, Calderini G, Mazzari S, Zanotti A, Toffano G (1985) Experimental models of aging and quinolinic acid. Meth Find Exp Clin Pharmacol 7: 563–568Google Scholar
  4. Aporti F, Borsato R, Calderini G, Rubini R, Toffano G, Zanotti A, Valzelli L, Goldstein L (1986) Age-dependent spontaneous EEG bursts in rats: effects of brain phosphatidylserine. Neurobiol Aging 7: 115–120PubMedCrossRefGoogle Scholar
  5. Avoli M (1980) Electroencephalographic and pathophysiologic features of rat parenteral penicillin epilepsy. Exp Neuropharmacol 69: 373–382Google Scholar
  6. Avoli M, Gloor P (1982) Interaction of cortex and thalamus in spike and wave discharges of feline generalized penicillin epilepsy. Exp Neural 76: 196–217CrossRefGoogle Scholar
  7. Avoli M, Gloor P, Kostopoulos G, Gotman J (1983) An analysis of penicillin-induced generalized spike and wave discharges using simultaneous recordings of cortical and thalamus single neurons. J Neurophysiol 50: 819–837PubMedGoogle Scholar
  8. Bassant MH, Cathala F, Court L, Gourmelon P, Hauw JJ (1984) Experimental scrapie in rats: first electrophysiological observations. Electroencephalogr Clin Neurophysiol 57: 541–547PubMedCrossRefGoogle Scholar
  9. Bassant MH, Court L, Cathala F (1987) Impairment of the cortical and thalamic electrical activity in scrapie-infected rats. Electroencephalogr Clin Neurophysiol 66: 307–316PubMedCrossRefGoogle Scholar
  10. Berkovic SF, Andermann F, Andermann E, Gloor P (1987) Concepts of absence epilepsies: discrete syndromes or biological continuum? Neurology 37: 993–1000PubMedGoogle Scholar
  11. Bernasconi R, Marescaux C, Vergnes M, Klebs K, Klein M, Martin P, Portet C, Maitre L, Schmutz M (1988) Evaluation of the anticonvulsant and biochemical activity of CGS 8216 and CGS 9896 in animal models. J Neural Transm 71: 11–27PubMedCrossRefGoogle Scholar
  12. Bernasconi R, Lauber J, Marescaux C, Vergnes M, Martin P, Rubio V, Leonhardt T, Reymann N, Bittiger H (1992) Experimental absence seizures: potential role of gamma-hydroxybutyric acid and GABAB receptors (this volume)Google Scholar
  13. Billiard M (1982) Epilepsies and the sleep-wake cycle. In: Sterman MB, Shouse MN, Passouant P (eds) Sleep and epilepsy. Academic Press, New York, pp 269–286Google Scholar
  14. Buonamici M, Maj R, Pagani F, Rossi AC, Khazan N (1986) Tremor at rest episodes in unilaterally 6-OHDA-induced substantia nigra lesioned rats: EEG-EMG and behavior. Neuropharmacology 25: 323–325Google Scholar
  15. Buzsâki G, Bickford RG, Armstrong DM, Ponomareff G, Chen KS, Ruiz R, Thal LJ, Gage FH (1988a) Electric activity in the neocortex of freely moving young and aged rats. Neuroscience 26: 735–744PubMedCrossRefGoogle Scholar
  16. Buzsâki G, Bickford RG, Ponomareff G, Thal LJ, Mandel RJ, Gage FH (1988b) Nucleus basalis and thalamic control of neocortical activity in the freely moving rat. J Neurosci 8: 4007–4026PubMedGoogle Scholar
  17. Buzsâki G, Laszlovszky I, Lajtha A, Vadâsz C (1990a) Spike-and-wave neocortical patterns in rats: genetic and aminergic control. Neuroscience 38: 323–333PubMedCrossRefGoogle Scholar
  18. Buzsâki G, Smith A, Berger S, Fisher LJ, Gage FH (1990b) Petit mal epilepsy and parkinsonian tremor: hypothesis of a common pacemaker. Neuroscience 36: 1–14PubMedCrossRefGoogle Scholar
  19. Chocholovâ L (1976) Effect of diazepam on the electroencephalographic pattern and vigilance of unanaesthetized and curarized rats with a chronic cobalt-gelatin focus. Physiol Bohemoslov 25: 129–137Google Scholar
  20. Chocholovâ L (1983) Incidence and development of rhythmic episodic activity in the electroencephalogram of a large rat population under chronic conditions. Physiol Bohemoslov 32: 10–18PubMedGoogle Scholar
  21. Chocholovâ L, Radil-Weiss T (1970) The level of vigilance and the EEG manifestations of cortical cobalt foci in rats. Physiol Bohemoslov 19: 385–396PubMedGoogle Scholar
  22. Chocholovâ L, Radil-Weiss T (1973) Effect of diphenylhydantoin on paroxysmal EEG activity induced by cortical cobalt focus. Activ Nerv Super 15: 70–76Google Scholar
  23. Coenen AML, Van Luijtelaar ELJM (1987) The WAG/Rij rat model for absence epilepsy: age and sex factors. Epilepsy Res 1: 297–301PubMedCrossRefGoogle Scholar
  24. Depaulis A (1983) A microcomputer method for behavioral data acquisition and subsequent analysis. Pharmacol Biochem Behav 19: 729–732PubMedCrossRefGoogle Scholar
  25. Depaulis A (1992) The inhibitory control of the substantia nigra over generalized non-convulsive seizures in the rat (this volume)Google Scholar
  26. Depaulis A, Bourguignon JJ, Marescaux C, Vergnes M, Schmitt M, Micheletti G, Warter JM (1988a) Effects of gamma-hydroxybutyrate and gamma-butyrolactone derivatives on spontaneous generalized non-convulsive seizures in the rat. Neuropharmacology 27: 683–689PubMedCrossRefGoogle Scholar
  27. Depaulis A, Vergnes M, Marescaux C, Lannes B, Warter JM (1988b) Evidence that activation of GABA receptors in the subtantia nigra suppresses spontaneous spikeand-wave discharges in the rat. Brain Res 448: 20–29PubMedCrossRefGoogle Scholar
  28. Depaulis A, Snead OC III, Marescaux C, Vergnes M (1989) Suppressive effects of intranigral injection of muscimol in three models of generalized non-convulsive epilepsy induced by chemical agents. Brain Res 498: 64–72PubMedCrossRefGoogle Scholar
  29. Depaulis A, Liu Z, Vergnes M, Marescaux C, Micheletti G, Warter JM (1990a) Suppression of spontaneous generalized non-convulsive seizures in the rat by microinjection of GABA antagonists into the superior colliculus. Epilepsy Res 5: 192–198PubMedCrossRefGoogle Scholar
  30. Depaulis A, Vergnes M, Liu Z, Kempf E, Marescaux C (1990b) Involvement of the nigral output pathways in the inhibitory control of the substantia nigra over generalized non-convulsive seizures in the rat. Neuroscience 39: 339–349PubMedCrossRefGoogle Scholar
  31. Doose H, Gerken H, Horstmann T, Völzke E (1973) Genetic factors in spike-and-wave absences. Epilepsia 14: 57–75PubMedCrossRefGoogle Scholar
  32. Dow RS, Fernández-Guardiola A, Manni E (1962) The influence of the cerebellum on experimental epilepsy. Electroencephalogr Clin Neurophysiol 14: 383–398PubMedCrossRefGoogle Scholar
  33. Dusser AE, Peroutka SJ (1990) Neurotransmitter receptors in adult tottering (tg/tg) mice. Epilepsia 31: 378–381PubMedCrossRefGoogle Scholar
  34. Fariello RG, Golden GT (1987) The THIP-induced model of bilateral synchronous spike and wave in rodents. Neuropharmacology 26: 161–165PubMedCrossRefGoogle Scholar
  35. Fariello RG, Golden GT, Black JA (1980) Potentiation of a feline model of corticoreticular epilepsy by systematically administered inhibitory amino acids. In: Canger R, Angeleri F, Penry JK (eds) Advances in Epileptology, XIth Epilepsy International Symposium. Raven Press, New York, pp 339–342Google Scholar
  36. Frey HH, Voits M (1991) Effect of psychotropic agents on a model of absence epilepsy in rats. Neuropharmacology 30: 651–656PubMedCrossRefGoogle Scholar
  37. Gloor P, Fariello RG (1988) Generalized epilepsy: some of its cellular mechanisms differ from those of focal epilepsy. TINS 11: 63–68PubMedGoogle Scholar
  38. Gloor P, Metrakos J, Metrakos K, Andermann E, Van Gelder N (1982) Neurophysiological, genetic and biochemical nature of the epileptic diathesis. In: Broughton RJ (ed) Henri Gastaut and the Marseille School’s contribution to the neurosciences. Elsevier Biomedical Press, Amsterdam, pp 45–56 (EEG [Suppl] 35 )Google Scholar
  39. Guey J, Bureau M, Dravet C, Roger J (1969) A study of the rhythm of petit mal absences in children in relation to prevailing situations. The use of EEG telemetry during psychological examinations, school exercises and periods of inactivity. Epilepsia 10: 441–451Google Scholar
  40. Hammond EJ, Villarreal HJ, Wilder BJ (1979) Distinction between normal and epileptic rhythms in rodent sensorimotor cortex. Epilepsia 20: 511–518PubMedCrossRefGoogle Scholar
  41. Heller AH, Dichter MA, Sidman RL (1983) Anticonvulsant sensitivity of absence seizures in the tottering mutant mouse. Epilepsia 25: 25–34CrossRefGoogle Scholar
  42. Jensen LH, Marescaux C, Vergnes M, Micheletti G, Petersen EN (1984) Antiepileptic action of the ß-carboline ZK 91296 in a genetic petit mal model in rats. Eur J Pharmacol 102: 521–524PubMedCrossRefGoogle Scholar
  43. Jung R (1962) Blocking of petit-mal attacks by sensory arousal and inhibition of attacks by an active change in attention during the epileptic aura. Epilepsia 3: 435–437CrossRefGoogle Scholar
  44. Kaplan BJ (1985) The epileptic nature of rodent electrocortical polyspiking is still unproven. Exp Neurol 88: 425–436PubMedCrossRefGoogle Scholar
  45. Kaplan BJ, Seyfried TN, Glaser GH (1979) Spontaneous polyspike discharges in an epileptic mutant mouse (tottering). Exp Neurol 66: 577–586PubMedCrossRefGoogle Scholar
  46. King GA (1979) Effects of systematically applied GABA agonists and antagonists on wave-spike ECoG activity in rat. Neuropharmacology 18: 47–55PubMedCrossRefGoogle Scholar
  47. King GA, Burnham WM (1980) Effects of d-amphetamine and apomorphine in a new animal model of petit mal epilepsy. Psychopharmacology 69: 281–285PubMedCrossRefGoogle Scholar
  48. King GA, Burnham WM (1982) a2-adrenergic antagonists suppress epileptiform EEG activity in a petit mal seizure model. Life Sci 30: 293–298Google Scholar
  49. Kleinlogel H (1985) Spontaneous EEG paroxysms in the rat: effects of psychotropic and alphaadrenergic agents. Neuropsychobiology 13: 206–213PubMedCrossRefGoogle Scholar
  50. Klingberg F, Pickenhain L (1968) Das Auftreten von “Spindelentladungen” bei der Ratte in Beziehung zum Verhalten. Acta Biol Med Gem 20: 45–54Google Scholar
  51. Knight AR, Bowery NG (1992) GABAB receptors in rats with spontaneous generalized non-convulsive epilepsy (this volume)Google Scholar
  52. Kohler M, Klingberg F (1969) Auslösung von Spindelaktivität im Noekortex der Ratte durch Reizung des ventralen Thalamuskernes. Acta Biol Med Gem 23: 99–110Google Scholar
  53. Kornetsky C (1977) Animal models: promises and problems. In: Hanin I, Usdin E (eds) Animal models in psychiatry and neurology. Pergamon Press, Oxford, pp 1–7Google Scholar
  54. Kostopoulos G, Veronikis DK, Efthimiou I (1987) Caffeine blocks absence seizures in the tottering mutant mouse. Epilepsia 28: 415–420PubMedCrossRefGoogle Scholar
  55. Lannes B, Micheletti G, Vergnes M, Marescaux C, Depaulis A, Warter JM (1988) Relationship between spike-wave discharges and vigilance levels in rats with spontaneous petit mal-like epilepsy. Neurosci Lett 94: 187–191PubMedCrossRefGoogle Scholar
  56. Lannes B, Vergnes M, Marescaux C, Depaulis A, Micheletti G, Warter JM, Kempf E (1991) Lesions of noradrenergic neurons in rats with spontaneous generalized non-convulsive epilepsy. Epilepsy Res 9: 79–85PubMedCrossRefGoogle Scholar
  57. Lennox WG, Lennox MA (1960) Epilepsy and related disorders 1. Little Brown and Co, BostonGoogle Scholar
  58. Libet B, Gleason CA, Wright EW, Feinstein B (1977) Suppression of an epileptiform type of electrocortical activity in the rat by stimulation in the vicinity of locus coeruleus. Epilepsia 18: 451–455PubMedCrossRefGoogle Scholar
  59. Libouban S, Oswaldo-Cruz E (1958) Quelques observations relatives aux activitiés évoquées et spontanées du cerveau du rat blanc. J Physiol (Paris) 50: 380–383Google Scholar
  60. Liu Z, Seiler N, Marescaux C, Depaulis A, Vergnes M (1990) Potentiation of gamma-vinyl GABA (vigabatrin) effects by glycine. Eur J Pharmacol 182: 109–115PubMedCrossRefGoogle Scholar
  61. Liu Z, Snead OC III, Vergnes M, Depaulis A, Marescaux C (1991a) Intrathalamic injections of gamma-hydroxybutyric acid increase genetic absence seizures in rats. Neurosci Lett 125: 19–21PubMedCrossRefGoogle Scholar
  62. Liu Z, Vergnes M, Depaulis A, Marescaux C (1991b) Evidence for a critical role of GABA ergic transmission within the thalamus in the genesis and control of absence seizures in the rat. Brain Res 545: 1–7PubMedCrossRefGoogle Scholar
  63. Loiseau P, Cohadon F (1970) Le petit mal et ses frontières. Masson, ParisGoogle Scholar
  64. Löscher W, Nau H, Marescaux C, Vergnes M (1984) Comparative evaluation of anticonvulsant and toxic potencies of valproic acid and 2-en-valproic acid in different animal models of epilepsy. Eur J Pharmacol 99: 211–218PubMedCrossRefGoogle Scholar
  65. Luna D, Dulac O, Pajot N, Beaumont D (1989) Vigabatrin in the tratment of childhood epilepsies: a single-blind placebo-controlled study. Epilepsia 30: 430–437PubMedCrossRefGoogle Scholar
  66. McLachlan RS, Avoli M, Gloor P (1984a) Transition from spindles to generalized spike and wave discharges in the cat: simultaneous single-cell recordings in cortex and thalamus. Exp Neurol 85: 413–425PubMedCrossRefGoogle Scholar
  67. McLachlan RS, Gloor P, Avoli M (1984b) Differential participation of some “specific” and “non-specific” thalamic nuclei in generalized spike and wave discharges of feline generalized penicillin epilepsy. Brain Res 307: 277–287PubMedCrossRefGoogle Scholar
  68. McQueen JK, Woodbury DM (1975) Attempts to produce spike-and-wave complexes in the electro-corticogram of the rat. Epilepsia 16: 295–299PubMedCrossRefGoogle Scholar
  69. Maître M, Hechler V, Vayer P, Gobaille S, Cash CD, Schmitt M, Bourguignon JJ (1990) A specific gamma-hydroxybutyrate receptor ligand possesses both antagonistic and anticonvulsant properties. J Pharmacol Exp Ther 255: 657–663PubMedGoogle Scholar
  70. Marescaux C, Micheletti G, Vergnes M, Depaulis A, Rumbach L, Warter JM (1984a) A model of chronic spontaneous petit mal-like seizures in the rat: comparison with pentylenetetrazol-induced seizures. Epilepsia 25: 326–331PubMedCrossRefGoogle Scholar
  71. Marescaux C, Micheletti G, Vergnes M, Depaulis A, Rumbach L, Warter JM (1984b) Biphasic effects of Ro 15–1788 on spontaneous petit mal-like seizures in rats. Eur J Pharmacol 102: 355–359PubMedCrossRefGoogle Scholar
  72. Marescaux C, Vergnes M, Micheletti G (1984c) Antiepileptic drug evaluation in a new animal model: spontaneous petit mal epilepsy in the rat. Fed Proc 43: 280–281Google Scholar
  73. Marescaux C, Vergnes M, Micheletti G, Depaulis A, Reis J, Rumbach L, Warter JM, Kurtz D (1984d) Une forme génétique d’absences petit mal chez le rat Wistar. Rev Neurol (Paris) 140: 63–66Google Scholar
  74. Marescaux C, Micheletti G, Vergnes M, Rumbach L, Warter JM (1985) Diazepam antagonizes GABAmimetics in rats with spontaneous petit mal-like epilepsy. Eur J Pharmacol 113: 19–24PubMedCrossRefGoogle Scholar
  75. Marescaux C, Vergnes M, Jensen LH, Petersen E, Depaulis A, Micheletti G, Warter JM (1987a) Bidirectional effects of beta-carbolines in rats with spontaneous petit mal-like seizures. Brain Res Bull 19: 327–335PubMedCrossRefGoogle Scholar
  76. Marescaux C, Vergnes M, Micheletti G, Rumbach L, Warter JM (1987b) Electrocorticographic and behavioral effects of repeated injections of non-convulsant doses of pentylenetetrazol in the rat. In: Wolf P, Dam M, Janz D, Dreifuss FE (eds) Advances in epileptology, vol 16. Raven Press, New York, pp 67–69Google Scholar
  77. Marescaux C, Vergnes M, Micheletti G, Rumbach L, Warter JM (1987b) Electrocorticographic and behavioral effects of repeated injections of non-convulsant doses of pentylenetetrazol in the rat. In: Wolf P, Dam M, Janz D, Dreifuss FE (eds) Advances in epileptology, vol 16. Raven Press, New York, pp 67–69Google Scholar
  78. Marescaux C, Vergnes M, Bernasconi R (1992b) GABAB receptor antagonists: potential new anti-absence drugs (this volume)Google Scholar
  79. Meldrum B, Horton R (1980) Effects of the bicyclic GABA agonist, THIP, on myoclonic and seizure responses in mice and baboons with reflex epilepsy. Eur J Pharmacol 61: 231–237Google Scholar
  80. Metrakos K, Metrakos JD (1974) Genetics of epilepsy. In: Vinken PJ, Bruyn GW (eds) Handbook of clinical neurology, vol 15. North-Holland, Amsterdam, pp 429–439Google Scholar
  81. Micheletti G, Marescaux C, Vergnes M, Rumbach L, Warter JM (1985a) Effects of GABAmimetics and GABA antagonists on spontaneous nonconvulsive seizures in Wistar rats. In: Bartholini G, Bossi L, Lloyd KG, Morselli ML (eds) L.E.R.S. Monograph series, vol 3. Raven Press, New York, pp 129–137Google Scholar
  82. Micheletti G, Vergnes M, Marescaux C, Reis J, Depaulis A, Rumbach L, Warter JM (1985b) Antiepileptic drug evaluation in a new animal model: spontaneous petit mal epilepsy in the rat. Arzneimittelforschung/Drug Res 35: 483–485Google Scholar
  83. Micheletti G, Warter JM, Marescaux C, Depaulis A, Tranchant C, Rumbach L, Vergnes M (1987) Effects of drugs affecting noradrenergic neuro-transmission in rats with spontaneous petit mal-like seizures. Eur J Pharmacol 135: 397–402PubMedCrossRefGoogle Scholar
  84. Mirsky AF, Duncan CC, Myslobodsky MS (1986) Petit mal epilepsy: a review and integration of recent information. J Clin Neurophysiol 3: 179–208PubMedGoogle Scholar
  85. Mouritzen Dam A, Marescaux C, Vergnes M, Dam M (1989) Thalamus and epilepsy. In: Manelis J, Bental E, Loeber JN, Dreifuss FE (eds) Advances in epileptology, vol 17. Raven Press, New York, pp 63–66Google Scholar
  86. Musgrave J, Gloor P (1980) The role of the corpus callosum in bilateral interhemispheric synchrony of spike and wave discharge in feline generalized penicillin epilepsy. Epilepsia 21: 369–378PubMedCrossRefGoogle Scholar
  87. Nehlig A, Vergnes M, Marescaux C, Boyet S, Lannes B (1991) Local cerebral glucose utilization in rats with petit mal-like seizures. Ann Neurol 29: 72–77PubMedCrossRefGoogle Scholar
  88. Nehlig A, Vergnes M, Marescaux C, Boyet S (1992) Mapping of cerebral energy metabolism in rats with genetic generalized non convulsive epilepsy (this volume )Google Scholar
  89. Noebels JL (1984) A single gene error of noradrenergic axon growth synchronizes central neurones. Nature 310: 409–411PubMedCrossRefGoogle Scholar
  90. Noebels JL, Sidman RL (1979) Inherited epilepsy: spike-wave and focal motor seizures in the mutant mouse tottering. Science 204: 1334–1336PubMedCrossRefGoogle Scholar
  91. Noebels JL, Qiao X, Bronson RT, Spencer C, Davisson MT (1990) Stargazer: a new neurological mutant on chromosome 15 in the mouse with prolonged cortical seizures. Epilepsy Res 7: 129–135PubMedCrossRefGoogle Scholar
  92. Patel S, Chapman AG, Millan MH, Meldrum BS (1988) Epilepsy and excitatory amino acids antagonists. In: Lodge D (ed) Excitatory amino acids in health and disease. Wiley, Chichester, pp 353–378Google Scholar
  93. Peeters BWMM, Sporen WPJM, van Luijtelaar ELJM, Coenen AML (1988) The WAG/Rij rat model for absence epilepsy: anticonvulsant drug evaluation. Neurosci Res Commun 2: 93–97Google Scholar
  94. Peeters BWMM, van Rijn CM, van Luijtelaar ELJM, Coenen AML (1989) Antiepileptic and behavioural actions of MK-801 in an animal model of spontaneous absence epilepsy. Epilepsy Res 3: 178–181PubMedCrossRefGoogle Scholar
  95. Peeters BWMM, Kerbusch JML, van Luijtelaar ELJM, Vossen JMH, Coenen AML (1990a) Genetics of absence epilepsy in rats. Behav Genet 20: 453–460PubMedCrossRefGoogle Scholar
  96. Peeters BWMM, van Rijn CM, Vossen JMH, Coenen AML (1990b) Involvement of NMDA receptors in non-convulsive epilepsy in WAG/Rij rats. Life Sci 47: 523–529PubMedCrossRefGoogle Scholar
  97. Prince D, Farrell D (1969) “Centrencephalic” spike-wave discharges following parenteral penicillin injection in the cat. Neurology 19: 309–310Google Scholar
  98. Qiao X, Noebels JL (1991) Genetic and phenotypic heterogeneity of inherited spike-wave epilepsy: two mutant gene loci with independent cerebral excitability defects. Brain Res 555: 43–50PubMedCrossRefGoogle Scholar
  99. Quesney LF, Reader T (1984) Role of cortical catecholamine depletion in the genesis of epileptic photosensitivity. In: Fariello RG, Morselli PL, Lloyd KG, Quesney LF, Engel J (eds) Neurotransmitters, seizures and epilepsy II. Raven Press, New York, pp 11–21Google Scholar
  100. Radii T, Chocholovâ L, Roldân E (1982) The influence of sleep-waking states on EEG manifestations of experimental epileptoid foci. In: Sterman MB, Shouse MN, Passouant P (eds) Sleep and epilepsy. Academic Press, New York, pp 73–88Google Scholar
  101. Robinson PF, Gilmore SA (1980) Spontaneous generalized spike-wave discharges in the electrocorticograms of albino rats. Brain Res 201: 452–458PubMedCrossRefGoogle Scholar
  102. Roldân E, Radil-Weiss T, Chocholovâ L (1970) Paroxysmal activity of hippocampal and thalamic epileptogenic foci and induced or spontaneous changes of vigilance. Exp Neurol 29: 121–130PubMedCrossRefGoogle Scholar
  103. Ryan LJ (1984) Characterization of cortical spindles in DBA/2 and C5BL/6 inbred mice. Brain Res Bull 13: 549–558PubMedCrossRefGoogle Scholar
  104. Ryan LJ (1985a) Cholinergic regulation of neocortical spinding in DBA/2 mice. Exp Neurol 89: 372–381PubMedCrossRefGoogle Scholar
  105. Ryan LJ (1985b) Catecholamine regulation of neocortical spindling in DBA/2 mice. Behav Brain Res 16: 103–115PubMedCrossRefGoogle Scholar
  106. Ryan LJ, Sharpless SK (1979) Genetically determined spontaneous and pentylenetetrazol-induced brief spindle episodes in mice. Exp Neurol 66: 493–508PubMedCrossRefGoogle Scholar
  107. Sasa M, Ohno Y, Ujihara H, Fujita Y, Yoshimura M, Takaori S, Serikawa T, Yamada J (1988) Effects of antiepileptic drugs on absence-like and tonic seizures in the spontaneous epileptic rat, a double mutant rat. Epilepsia 29: 505–513PubMedCrossRefGoogle Scholar
  108. Schickerovâ R, Mares P, Trojan S (1984) Correlation between electrocorticographic and motor phenomena induced by pentamethylenetetrazol during ontogenesis in rats. Exp Neurol 84: 153–164PubMedCrossRefGoogle Scholar
  109. Semba K, Komisaruk BR (1984) Neural substates of two different rhythmical vibrissal movements in the rat. Neuroscience 12: 761–774PubMedCrossRefGoogle Scholar
  110. Semba K, Szechtamn H, Komisaruk BR (1980) Synchrony among rhythmical facial tremor neocortical “alpha” waves and thalamic non-sensory neuronal bursts in intact awake rats. Brain Res 195: 281–298PubMedCrossRefGoogle Scholar
  111. Serikawa T, Ohno Y, Sasa M, Yamada J, Takaori S (1987) A new model of petit mal epilepsy: spontaneous spike and wave discharges in tremor rats. Lab Anim 21: 68–71PubMedCrossRefGoogle Scholar
  112. Smith KA, Bierkamper GG (1990) Paradoxical role of GABA in a chronic model of petit mal (absence)-like epilepsy in the rat. Eur J Pharmacol 176: 45–55PubMedCrossRefGoogle Scholar
  113. Snead OC III (1978) Gamma hydroxybutyrate in the monkey. Neurology 28: 636–642PubMedGoogle Scholar
  114. Snead OC III (1988) Gamma-hydroxybutyrate model of generalized absence seizures: Further characterization and comparison with other absence models. Epilepsia 29: 361–368PubMedCrossRefGoogle Scholar
  115. Snead OC III (1992) Pharmacological models of generalized absence seizures in rodents (this volume)Google Scholar
  116. Snead OC III, Hechler V, Vergnes M, Marescaux C, Maitre M (1990) Increased gamma-hydroxybutyric acid receptors in thalamus of a genetic animal model of petit mal epilepsy. Epilepsy Res 7: 121–128PubMedCrossRefGoogle Scholar
  117. Stefan H, Plouin P, Fichsel H, Jalin C, Burr W (1988) Progabide for previously untreated absence epilepsy. Epilepsy Res 2: 132–136PubMedCrossRefGoogle Scholar
  118. Steriade M, Deschenes M (1984) The thalamus as a neuronal oscillator. Brain Res Rev 8: 1–63CrossRefGoogle Scholar
  119. Timo-Iaria C, Negrâo N, Schmidek WR, Hoshino K, Lobato-Menezes CE, Lerne-Rocha T (1970) Phases and stated of sleep in the rat. Physiol Behav 5: 1057–1062PubMedCrossRefGoogle Scholar
  120. Van Luijtelaar ELJM, Coenen AML (1986) Two types of electrocortical paroxysms in an inbred strain of rats. Neurosci Lett 70: 393–397PubMedCrossRefGoogle Scholar
  121. Vanderwolf CH (1975) Neocortical and hippocampal activation in relation to behavior: effects of atropine, eserine, phenothiazines, and amphetamine. J Comput Physiol Psychol 88: 300–323CrossRefGoogle Scholar
  122. Vanderwolf CH, Robinson TE (1981) Reticulo-cortical activity and behavior: a critique of the arousal theory and a new synthesis. Behav Brain Sci 4: 459–514CrossRefGoogle Scholar
  123. Vergnes M, Marescaux C (1992) Cortical and thalamic lesions in rats with genetic absence epilepsy (this volume)Google Scholar
  124. Vergnes M, Marescaux C, Micheletti G, Reis J, Depaulis A, Rumbach L, Warter JM (1982) Spontaneous paroxysmal electroclinical patterns in rat: a model of generalized non-convulsive epilepsy. Neurosci Lett 33: 97–101PubMedCrossRefGoogle Scholar
  125. Vergnes M, Marescaux C, Micheletti G, Depaulis A, Rumbach L, Warter JM (1984) Enhancement of spike and wave discharges by GAB Aminetic drugs in rats with spontaneous petit mal-like epilepsy. Neurosci Lett 44: 91–94PubMedCrossRefGoogle Scholar
  126. Vergnes M, Marescaux C, Micheletti G, Rumbach L, Warter JM (1985) Blockage of “antiabsence” activity of sodium valproate by THIP in rats with petit mal-like seizures. J Neural Transm 63: 133–141PubMedCrossRefGoogle Scholar
  127. Vergnes M, Marescaux C, Depaulis A, Micheletti G, Warter JM (1986) Ontogeny of spontaneous petit mal-like seizures in Wistar rats. Dev Brain Res 30: 85–87CrossRefGoogle Scholar
  128. Vergnes M, Marescaux C, Depaulis A, Micheletti G, Warter JM (1987) Spontaneous spike and wave discharges in thalamus and cortex in a rat model of genetic petit mal-like seizures. Exp Neurol 96: 127–136PubMedCrossRefGoogle Scholar
  129. Vergnes M, Marescaux C, Lannes B, Depaulis A, Micheletti G, Warter JM (1989) Interhemispheric desynchronization of spontaneous spike-wave discharges by corpus callosum transection in rats with petit mal-like epilepsy. Epilepsy Res 4: 8–13PubMedCrossRefGoogle Scholar
  130. Vergnes M, Marescaux C, Depaulis A (1990a) Mapping of spontaneous spike and wave discharges in Wistar rats with genetic generalized non-convulsive epilepsy. Brain Res 523: 87–91PubMedCrossRefGoogle Scholar
  131. Vergnes M, Marescaux C, Depaulis A, Micheletti G, Warter JM (1990b) Spontaneous spike-and-wave discharges in Wistar rats: a model of genetic generalized nonconvulsive epilepsy. In: Avoli M, Gloor P, Kostopoulos G, Naquet R (eds) Generalized epilepsy. Birkäuser, Boston, pp 238–253Google Scholar
  132. Vergnes M, Marescaux C, Boehrer A, Depaulis A (1991) Are rats with genetic absence epilepsy behaviorally impaired? Epilepsy Res 9: 97–104PubMedCrossRefGoogle Scholar
  133. Wahle H, Frey HH (1990) Development of tolerance to the anticonvulsant effect of valproate but not to ethosuximide in a rat model of absence epilepsy. Eur J Pharmacol 181: 1–8PubMedCrossRefGoogle Scholar
  134. Warter JM, Vergnes M, Depaulis A, Tranchant C, Rumbach L, Micheletti G, Marescaux C (1988) Effects of drugs affecting dopaminergic neurotransmission in rats with spontaneous petit mal-like seizures. Neuropharmacology 27: 269–274PubMedCrossRefGoogle Scholar
  135. Warter JM, Tranchant C, Marescaux C, Depaulis A, Lannes B, Vergnes M (1990) Immediate effects of 14 non MAOI antidepressants in rats with spontaneous petit mal-like seizures. Prog Neuro Psychopharmacol Biol Psychiatry 14: 261–270CrossRefGoogle Scholar
  136. Whishaw IQ, Vanderwolf CH (1971) Hippocampal EEG and behavior: effects of variation in body temperature and relation of EEG to vibrissae movement, swimming and shivering. Physiol Behav 6: 391–397PubMedCrossRefGoogle Scholar
  137. Williams D (1953) A study of thalamic and cortical rhythms in petit mal. Brain 76: 50–69PubMedCrossRefGoogle Scholar
  138. Willmore LJ, Sypert GW, Munson JB, Hurd RW (1978) Chronic focal epileptiform discharges induced by injection of iron into rat and cat cortex. Science 200: 1501–1502PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • C. Marescaux
    • 1
    • 3
  • M. Vergnes
    • 2
  • A. Depaulis
    • 2
  1. 1.Service de Neurologie IC.H.U.StrasbourgFrance
  2. 2.Laboratoire de Neurophysiologie et Biologie des Comportements, Centre de NeurochimieC.N.R.S.StrasbourgFrance
  3. 3.Service de Neurologie IHôpital UniversitaireStrasbourg CedexFrance

Personalised recommendations