Skip to main content

The tottering mouse: a critical review of its usefulness in the study of the neuronal mechanisms underlying epilepsy

  • Conference paper
Generalized Non-Convulsive Epilepsy: Focus on GABA-B Receptors

Part of the book series: Journal of Neural Transmission ((NEURAL SUPPL,volume 35))

Summary

The tottering mouse resulted from a recessively inherited, autosomal, single-locus mutation which produces a very characteristic neurological and cellular phenotype. Almost simultaneously and late in the development of this mutant appears a triad of symptoms: frequent episodes of absence seizures with spike-and-wave discharges; more rarely occurring episodes of focal motor seizures; and ataxia. Electrographic, behavioural and pharmacological similarities to absence epilepsy in man make the tottering mouse a useful animal model for testing new anti-absence drugs. It also affords a unique opportunity to study the effects of multiple alleles on epileptic behaviour. The neuronal mechanisms underlying the generation of absence seizures in this mutant are apparently a combination of a generalized noradrenergic hyperactivity in the brain and some gene-linked, but unknown, conditions prevailing in an earlier phase of development at specific brain areas which induce the generalized forebrain hyper-innervation by locus coeruleus terminals Several biochemically, microscopically and electrophysiologically identified cellular differences between normal and tottering mice are potential aspects of this primary developmental defect. Research into these gene-linked neuronal characteristics co-inherited with seizures in this mutant makes the tottering mouse a powerful tool in the study of cellular mechanisms underlying genetically determined factors in epileptogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott LC, Weber B, Abhold RH (1988) Norepinephrine and met-encephalin concentrations in specific brainstem and spinal cord regions of the genetically epileptic tottering (tg/tg) mouse. Soc Neurosci Abstr 14: 830

    Google Scholar 

  • Abbott LC, Nejad HH, Bottje WG, Hassan AS (1990) Glutathione levels in specific brain regions of genetically epileptic (tg/tg) mice. Brain Res Bull 25: 629–631

    Article  PubMed  CAS  Google Scholar 

  • Aghajänian GK (1984) The physiology of central alpha-and beta-adrenoreceptors. In: Usdin E, Carlson A, Dahlstrom A, Engel J (ed) Catecholamines: neuropharmacology and central nervous system. Theoretical aspects. Liss, New York, pp 85–92

    Google Scholar 

  • Avoli M, Gloor P, Kostopoulos G, Gotman J (1983) An analysis of penicillin-induced spike and wave discharges using simultaneous recordings of cortical and thalamic single neurons. J Neurophysiol 50: 819–837

    PubMed  CAS  Google Scholar 

  • Avoli M, Gloor P, Kostopoulos G, Naquet R (eds) (1990) Generalized epilepsy: neurobiological approaches. Birkhäuser, Boston, pp 480

    Google Scholar 

  • Beaulieu M, Coyle JT (1982) Fetally-induced noradrenergic hyperinnervation of cerebral cortex results in persistent down-regulation of beta-receptors. Dev Brain Res 4: 491–494

    Article  Google Scholar 

  • Burley ES, Ferrendelli JA (1984) Regulatory effects of neurotransmitters on electroshock and pentylenetetrazol seizures. Fed Proc 43: 2521–2524

    PubMed  CAS  Google Scholar 

  • Buzsaki G, Bickford RG, Ponomareff G, Thal LJ, Mandel R, Gage FH (1988) Nucleus basalis and thalamic control of neocortical activity in the freely moving rat. Neuroscience 8 (11): 4007–4026

    PubMed  CAS  Google Scholar 

  • Coulter DA, Huguenard JR, Prince DA (1990) Cellular actions of petit mal anticonvulsants: implication of thalamic low-threshold calcium current in generation of spike and wave discharges. In: Avoli M, Gloor P, Kostopoulos G, Naquet R (eds) Generalized epilepsy: neurobiological approaches. Birkhäuser, Boston, pp 425–435

    Google Scholar 

  • Dingledine R (1984) Brain slices. Plenum Press, New York

    Google Scholar 

  • Dreifuss FE (1990) The syndromes of generalized epilepsy. In: Avoli M, Gloor P, Kostopoulos G, Naquet R (eds) Generalized epilepsy: neurobiological approaches. Birkhäuser, Boston, p 480

    Google Scholar 

  • Dusser AE, Peroutka SJ (1990) Neurotransmitter receptors in adult tottering (tg/tg) mice. Epilepsia 31 (4): 378–381

    Article  PubMed  CAS  Google Scholar 

  • Elias M, Deacon T, Caviness VS Jr (1982) The development of neocortical adrenergic innervation in the mouse: a quantitative radioenzymatic analysis. Dev Brain Res 3: 652–656

    Article  CAS  Google Scholar 

  • Fisher RS (1989) Animal models of the epilepsies. Brain Res Rev 14: 245–278

    Article  PubMed  CAS  Google Scholar 

  • Foehring RC, Schwindt PC, Crill WE (1989) Norepinephrine selectively reduces slow Cat+ and Na+ -mediated K+ currents in cat neocortical neurons. J Neurophysiol 61: 245–256

    PubMed  CAS  Google Scholar 

  • Gloor P (1979) Generalized epilepsy with spike-and-wave discharge: a reinterpretation of its electrographic and clinical manifestations. Epilepsia 20: 571–588

    Article  PubMed  CAS  Google Scholar 

  • Gloor P (1982) Toward a unified concept of epileptogenesis. In: Akimoto H, Kazamatsuri H, Seino M, Ward A (eds) Advances in Epileptology: XIIIth Epilepsy International Symposium. Raven Press, New York, pp 83–86

    Google Scholar 

  • Gloor P, Pellegrini A, Kostopoulos GK (1979) Effects of changes in cortical excitability upon the epileptic bursts in generalized penicillin epilepsy of the cat. Electroencephalogr Clin Neurophysiol 46: 274–289

    Article  PubMed  CAS  Google Scholar 

  • Gloor P, Avoli M, Kostopoulos G (1990) Thalamocortical relationships in generalized epilepsy with bilaterally synchronous spike-and-wave discharge. In: Avoli M, Gloor P, Kostopoulos G, Naquet R (eds) Generalized epilepsy: neurobiological approaches. Birkhäuser, Boston, pp 190–212

    Google Scholar 

  • Green MC, Sidman RL (1962) Tottering: a neuromuscular mutation in the mouse. J Hered 53: 233–237

    PubMed  CAS  Google Scholar 

  • Hammond EJ, Villarreal HJ, Wilder BJ (1979) Distinction between normal and epileptic rhythms in rodent sensorimotor cortex. Epilepsia 20: 511–518

    Article  PubMed  CAS  Google Scholar 

  • Harden TK, Mailman RB, Mueller RA, Breese GR (1979) Noradrenergic hyperinnervation reduces the density of b-adrenergic receptors in rat cerebellum. Brain Res 166: 194–198

    Article  PubMed  CAS  Google Scholar 

  • Heller AH (1984) Clonidine exacerbates absence seizures in the mutant mouse tottering. Soc Neurosci Abstr 10: 411

    Google Scholar 

  • Heller AH, Dichter MA, Sidman RL (1983) Anticonvulsant sensitivity of absence seizures in the tottering mutant mouse. Epilepsia 25: 25–34

    Article  Google Scholar 

  • Hess EJ, Wilson MC (1989) Tyrosine hydroxylase is expressed in the purkinje cells of the allelic mouse mutants tottering and leaner. Soc Neurosci Abstr 15: 986

    Google Scholar 

  • Jalilian Tehrani MH, Barnes EM Jr (1990) Basal and drug-induced cAMP levels in cortical slices from the tottering mouse. Epilepsy Res 7: 205–209

    Article  PubMed  CAS  Google Scholar 

  • Jonzon B, Fredholm BB (1984) Adenosine receptor mediated inhibition of noradrenaline release from slices of the rat hippocampus. Life Sci 35: 1971–1979

    Article  PubMed  CAS  Google Scholar 

  • Kaplan BJ (1985) The epileptic nature of rodent electrocortical polyspiking is still unproven. Exp Neurol 88: 425–436

    Article  PubMed  CAS  Google Scholar 

  • Kaplan BJ, Seyfred TN, Glaser GH (1979) Spontaneous polyspike discharges in an epileptic mutant mouse (tottering). Exp Neurol 66: 577–586

    Article  PubMed  CAS  Google Scholar 

  • Kellaway P, Frost JD, Crawley JW (1990) The relationship between sleep spindles and spike-and-wave bursts in human epilepsy. In: Avoli M, Gloor P, Kostopoulos G, Naquet R (eds) Generalized epilepsy: neurobiological approaches. Birkhäuser, Boston, pp 36–48

    Google Scholar 

  • Kostopoulos G, Gloor P (1982) A mechanism for spike-wave discharge in feline penicillin epilepsy and its relationship to spindle generation. In: Sterman MB, Shouse MN, Passouant P (eds) Sleep and epilepsy. Academic Press, New York, pp 11–22

    Google Scholar 

  • Kostopoulos G, Psarropoulou C (1990) Increased postsynaptic excitability in hippocampal slices from the tottering epileptic mutant mouse. Epilepsy Res 6: 49–55

    Article  PubMed  CAS  Google Scholar 

  • Kostopoulos G, Psarropoulou C (1992) Possible mechanisms underlying hyperexcitability in the epileptic mutant mouse tottering (this volume)

    Google Scholar 

  • Kostopoulos G, Gloor P, Pellegrini A, Gotman J (1981) A study of the transition from spindles to spike and wave discharge in feline generalized penicillin epilepsy: microphysiological features. Exp Neurol 73: 55–77

    Article  PubMed  CAS  Google Scholar 

  • Kostopoulos G, Veronikis DK, Efthimiou I (1987) Caffeine blocks absence seizures in the tottering mutant mouse. Epilepsia 28 (4): 415–420

    Article  PubMed  CAS  Google Scholar 

  • Kostopoulos G, Psarropoulou C, Haas H (1988) Membrane properties, response to amines and to tetanic stimulation of hippocampal neurons in the genetically epileptic mutant mouse tottering. Exp Brain Res 72: 45–50

    Article  PubMed  CAS  Google Scholar 

  • Levitt P (1988) Normal pharmacological and morphometric parameters in the noradrenergic hyperinnervated mutant mouse tottering. Cell Tissue Res 252: 175–180

    Article  PubMed  CAS  Google Scholar 

  • Levitt P, Noebels JL (1981) Mutant mouse tottering: selective increase of locus coeruleus axons in a defined single-locus mutation. Proc Natl Acad Sci USA 78: 4630–4634

    Article  PubMed  CAS  Google Scholar 

  • Levitt P, Lau C, Pylypiw A, Ross LL (1987) Central adrenergic receptor changes in the inherited noradrenergic hyperinnervated mutant mouse tottering. Brain Res 418: 174–177

    Article  PubMed  CAS  Google Scholar 

  • Liles WC, Taylor S, Finnel R, Lai H, Nathanson NM (1986) Decreased muscarinic acetylcholine receptor number in the central nervous system of the tottering (tg/tg) mouse. J Neurochem 46: 977–982

    Article  PubMed  CAS  Google Scholar 

  • Magistretti PJ, Hof PR (1987) 3H-Glycogen hydrolysis in the cerebral cortex of two spontaneously epileptic mouse mutants: noradrenergic subsensitivity in the tottering mouse and age-dependent supersensitive response to K+ in the quaking mouse. Soc Neurosci Abstr 13: 1077

    Google Scholar 

  • Magistretti PJ, Hof PR, Celio MR (1987) Noradrenergic sub-sensitivity in the cerebral cortex of the tottering mouse, a spontaneously epileptic mutant. Brain Res 403: 181–185

    Article  PubMed  CAS  Google Scholar 

  • Mason ST, Corcoran ME (1979) Catecholamines and convulsions. Brain Res 170: 497–507

    Article  PubMed  CAS  Google Scholar 

  • McCormick DA, Prince DA (1988) Noradrenergic modulation of firing pattern in guinea pig and cat thalamic neurons, in vitro. J Neurophysiol 59 (3): 978–996

    PubMed  CAS  Google Scholar 

  • Meier H, MacPike D (1971) Three syndromes produced by two mutant genes in the mouse. Clinical pathological and ultrastructural bases of tottering, leaner and heterozygous mice. J Heredity 62: 297–302

    CAS  Google Scholar 

  • Micheletti G, Walter GM, Marescaux C, Depaulis A, Tranchant C, Rumbach L, Vergnes M (1987) Effects of drugs affecting noradrenergic neurotransmission in rats with spontaneous petit-mal like seizures. Eur J Pharmacol 135: 397–402

    Article  PubMed  CAS  Google Scholar 

  • Nicoll RA, Malenka RC, Kauer JA (1990) Functional comparison of neurotransmitter receptor subtypes in mammalian central nervous system. Physiol Rev 70 (2): 513–565

    PubMed  CAS  Google Scholar 

  • Noebels JL (1979) Analysis of inherited epilepsy using single locus mutations in mice. Fed Proc 38: 2405–2410

    PubMed  CAS  Google Scholar 

  • Noebels JL (1984a) A single gene error of noradrenergic axon growth synchronizes central neurons. Nature 310: 409–411

    Article  PubMed  CAS  Google Scholar 

  • Noebels JL (1984b) Isolating single genes of the inherited epilepsies. Ann Neurol 16 [Suppl]: s18 - s21

    Article  PubMed  Google Scholar 

  • Noebels JL (1986) Mutational analysis of inherited epilepsies. In: Delgado-Escueta AV, Ward Jr AA, Woodbury DM, Porter RJ (eds) Advances in epilepsy, vol 44. Raven Press, New York, pp 97–113

    Google Scholar 

  • Noebels JL, Sidman RL (1979) Inherited epilepsy: spike-wave and focal motor seizures in the mutant mouse tottering. Science 204: 1334–1336

    Article  PubMed  CAS  Google Scholar 

  • Oiao X, Noebels JL, Bronson RT, Davisson MT (1989) Stargazer: a neurological mutant with a complex pattern of inherited spike-wave seizures. Soc Neurosci Abstr 15: 48

    Google Scholar 

  • Olpe H-R (1982) The locus coeruleus as a target for the activating action of vincamine, nicotine and caffeine. Experientia 38: 757

    Google Scholar 

  • Phillips E, Levitt P (1986) Developmental expression of the hypertrophied locus coeruleus terminal arbor in the mutant mouse tottering. Soc Neurosci Abstr 12: 1361

    Google Scholar 

  • Phillis JW, Kostopoulos GK (1975) Adenosine as a putative transmitter in the cerebral cortex. Studies with potentiators and antagonists. Life Sci 17: 1085–1094

    Article  PubMed  CAS  Google Scholar 

  • Psarropoulou C, Angelatou F, Matsokis N, Veronikis DK, Kostopoulos G (1987) Absence of modification in GABA and benzodiazepine binding and in choline acetyltransferase activity in brain areas of the epileptic mutant mouse tottering. Gen Pharmacol 18 (6): 593–597

    Article  PubMed  CAS  Google Scholar 

  • Rosenblatt JE, Pert CB, Tallman JF, Pert A, Bunnery WE (1979) The effect of imipramine and lithium on a and b receptor binding in the rat brain. Brain Res 160: 186–191

    Article  PubMed  CAS  Google Scholar 

  • Schreiber RA (1981) Developmental changes in brain glucose, glycogen, phosphocreatine and ATP levels in DBA/2J and C57BL/6J mice and audiogenic seizures. J Neurochem 37: 655–661

    Article  PubMed  CAS  Google Scholar 

  • Seyfried TN, Glaser GH (1985) A review of mouse mutants as genetic models of epilepsy. Epilepsia 26 (2): 143–150

    Article  PubMed  CAS  Google Scholar 

  • Seyfried TN, Itoh T, Glaser GH, Miyazawa, Yu RK (1981) Cerebellar gangliosides and phospholipids in mutant mice with ataxia and epilepsy: the tottering/leaner syndrome. Brain Res 216: 429–436

    Article  PubMed  CAS  Google Scholar 

  • Shefner SA, Chiu TH (1986) Adenosine inhibits locus coeruleus neurons: an intracellular study in a rat brain slice preparation. Brain Res 366: 364–368

    Article  PubMed  CAS  Google Scholar 

  • Snyder S, Sklar P (1984) Behavioral and molecular actions of caffeine: focus on adenosine. J Psychiatr Res 18: 91–106

    Article  PubMed  CAS  Google Scholar 

  • Stanfield BB (1989a) Excessive intra-and supragranular mossy fibers in the dentate gyrus of tottering (tg/tg) mice. Brain Res 480: 294–299

    Article  PubMed  CAS  Google Scholar 

  • Stanfield BB (1989b) The distribution of hippocampal and spinal projecting cells in the locus coeruleus of tottering mice. Neuroscience 32: 381–386

    Article  PubMed  CAS  Google Scholar 

  • Steriade M (1990) Spindling, incremental thalamocortical responses and spike-wave epilepsy. In: Avoli M, Gloor P, Kostopoulos G, Naquet R (eds) Generalized epilepsy: neurobiological approaches. Birkhäuser, Boston, pp 161–180

    Google Scholar 

  • Syapin PJ (1982) Effects of the tottering mutation in the mouse: multiple neurological changes. Exp Neurol 76: 566–573

    Article  PubMed  CAS  Google Scholar 

  • Syapin PJ (1983) Inhibition of pentylenetetrazol induced genetically-determined stereotypic convulsions in tottering mutant mice by diazepam. Pharmacol Biochem Behav 18: 389–394

    Article  PubMed  CAS  Google Scholar 

  • Taylor-Courval D, Gloor P (1984) Behavioural alterations associated with generalized spike and wave discharges in the EEG of the cat. Exp Neurol 83: 167–186

    Article  PubMed  CAS  Google Scholar 

  • Vergnes M, Marescaux C, Despaulis A, Micheletti G, Warter JM (1990) Spontaneous spike-and-wave discharges in wistar rats: a model of genetic generalized nonconvulsive epilepsy. In: Avoli M, Gloor P, Kostopoulos G, Naquet R (eds) Generalized epilepsy: neurobiological approaches. Birkhäuser, Boston, pp 238–253

    Google Scholar 

  • Zhu Z, Armstrong DL, Grossman RG, Hamilton WJ (1989) Tyrosine-hydroxylaseimmunoreactive neurons in the temporal lobe in complex partial seizures. Ann Neurol 27: 565–572

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag

About this paper

Cite this paper

Kostopoulos, G.K. (1992). The tottering mouse: a critical review of its usefulness in the study of the neuronal mechanisms underlying epilepsy. In: Marescaux, C., Vergnes, M., Bernasconi, R. (eds) Generalized Non-Convulsive Epilepsy: Focus on GABA-B Receptors. Journal of Neural Transmission, vol 35. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9206-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9206-1_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82340-8

  • Online ISBN: 978-3-7091-9206-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics