GABAB receptor antagonists: potential new anti-absence drugs

  • C. Marescaux
  • M. Vergnes
  • R. Bernasconi
Part of the Journal of Neural Transmission book series (NEURAL SUPPL, volume 35)


The availability of new antagonists of the GABAB receptor which readily cross the blood-brain barrier has made it possible to investigate the role of GABAB-receptor-mediated transmission in the control of spike-and-wave discharges (SWD) in a strain of rats (GAERS) with genetic absence epilepsy. Systemic administration of R-Baclofen, a GABAB agonist, increased the duration of SWD, or elicited SWD-like oscillations in the cortical EEG of non-epileptic control rats. Conversely, administration of CGP 35348, a GABAB antagonist, either i.p. or p.o., dose-dependently suppressed the spontaneous SWD, as well as the SWD aggravated by concomitant injection of various GABAmimetic drugs, GHB, or anticonvulsants known to exacerbate absence seizures. These results demonstrate the involvement of GABAB-mediated neurotransmission in the development of SWD in generalized non-convulsive epilepsy. GABAB antagonists may thus be considered to be potentially specific anti-absence drugs.


GABAB Receptor Absence Seizure Absence Epilepsy Cumulative Duration GABAB Receptor Antagonist 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bittiger H, Froestl W, Hall R, Karlsson G, Klebs K, Olpe HR, Pozza MF, Steinmann MW, Van Riezen H (1990) Biochemistry, electrophysiology and pharmacology of a new GABAB antagonist: CGP 35348. In: Bowery NG, Bittiger H, Olpe HR (eds) GABAB receptors in mammalian function. Wiley, Chichester, pp 47–80Google Scholar
  2. Coulter DA, Huguenard JR, Prince DA (1990) Cellular actions of petit mal anti-convulsants: implication of thalamic low-threshold calcium current in generation of spike-wave discharge. In: Avoli M, Gloor P, Kostopoulos P, Naquet R (eds) Generalized epilepsy: neurobiological approaches. Birkhäuser, Boston, pp 425–435Google Scholar
  3. Crunelli V, Leresche N (1991) A role for GABAB receptor in excitation and inhibition of thalamocortical cells. Trends Neurosci 14: 16–21PubMedCrossRefGoogle Scholar
  4. Fariello RG, Golden GT (1987) The THIP-induced model of bilateral synchronous spike and wave in rodents. Neuropharmacology 26: 161–165PubMedCrossRefGoogle Scholar
  5. Fariello RG, Golden GT, Black JA (1980) Potentiation of a feline model of corticoreticular epilepsy by systematically administered inhibitory amino acids. In: Canger R, Angeleri F, Penry JK (eds) Advances in Epileptology, XIth Epilepsy International Symposium. Raven Press, New York, pp 339–342Google Scholar
  6. Fromm GH, Kohli CM (1972) The role of inhibitory pathways in petit mal epilepsy. Neurology 22: 1012–1020PubMedGoogle Scholar
  7. Fromm GH, Terrence CF (1987) Effect of antiepileptic drugs on the brainstem. In: Fromm GH, Faingold CL, Browning RA, Burnham WM (eds) Epilepsy and the reticular formation: the role of the reticular core in convulsive seizures. Alan R Liss, New York, pp 119–136Google Scholar
  8. Gloor P (1988) Neurophysiological mechanism of generalized spike-and-wave discharges and its implication for understanding absence seizures. In: Myslobodsky MS, Mirsky AF (eds) Elements of petit mal epilepsy. Peter Lang, New York, pp 159–209Google Scholar
  9. Gloor P, Fariello RG (1988) Generalized epilepsy: some of its cellular mechanisms differ from those of focal epilepsy. TINS 11: 63–68PubMedGoogle Scholar
  10. Hill DR, Bowery NG (1981) (3H)baclofen and (3H)GABA bind to bicucullineinsensitive GABAB sites in rat brain. Nature 290: 149–152PubMedCrossRefGoogle Scholar
  11. Jones EG (1988) Modern views of cellular thalamic mechanisms. In: Bentivoglio M, Spreafico R (eds) Cellular thalamic mechanisms. Elsevier, Amsterdam, pp 1–22Google Scholar
  12. Karlsson G, Schmutz M, Kolb C, Bittiger H, Olpe HR (1990) GABAB receptors and experimental models of epilepsy. In: Bowery NG, Bittiger H, Olpe HR (eds) GABAB receptors ion mammalian function. Wiley, Chichester, pp 349–365Google Scholar
  13. King GA (1979) Effects of systematically applied GABA agonists and antagonists on wave-spike ECoG activity in rat. Neuropharmacology 18: 47–55PubMedCrossRefGoogle Scholar
  14. Knight AR, Bowery NG (1992) GABA receptors in rats with spontaneous generalized nonconvulsive epilepsy (this volume)Google Scholar
  15. Liu Z, Vergnes M, Depaulis A, Marescaux C (1991) Evidence for a critical role of GABAergic transmission within the thalamus in the genesis and control of absence seizures in the rat. Brain Res 545: 1–7PubMedCrossRefGoogle Scholar
  16. Liu Z, Vergnes M, Depaulis A, Marescaux C (1992) Involvement of intrathalamic GABAB neurotransmission in the control of absence seizures in the rat. Neuroscience (in press)Google Scholar
  17. Llinâs RR, Geijo-Barrientos E (1988) In vitro studies of mammalian thalamic and reticularis thalami neurons. In: Bentivoglio M, Spreafico R (eds) Cellular thalamic mechanisms. Elsevier, Amsterdam, pp 23–33Google Scholar
  18. Marescaux C, Vergnes M, Depaulis A (1992) Genetic absence epilepsy in rats from Strasbourg. A review (this volume)Google Scholar
  19. Meldrum B, Horton R (1980) Effects of the bicyclic GABA agonist, THIP, on myoclonic and seizure responses in mice and baboons with reflex epilepsy. Eur J Pharmacol 61: 231–237PubMedCrossRefGoogle Scholar
  20. Olpe H, Karlsson G, Pozza MF, Brugger F, Steinmann M, Riezen HV, Fagg G, Hall RG, Froestl W, Bittiger H (1990) CGP 35348: a centrally active blocker of GABAB receptors. Eur J Pharmacol 187: 27–38PubMedCrossRefGoogle Scholar
  21. Snead OC (1990) The ontogeny of GABAergic enhancement of the gammahydroxybutyrate model of generalized absence seizure. Epilepsia 31: 363–368PubMedCrossRefGoogle Scholar
  22. Steriade M, Deschenes M The thalamus as a neuronal oscillator. Brain Res Rev 8: 1–63CrossRefGoogle Scholar
  23. Steriade M, Domich L, Oakson G, Deschenes M (1987) The deafferented reticular thalamic nucleus generates spindle rhythmicity. J Neurophysiol 57: 260–273PubMedGoogle Scholar
  24. Vergnes M, Marescaux C (1992) Cortical and thalamic lesions in rats with genetic absence epilepsy (this volume)Google Scholar
  25. Vergnes M, Marescaux C, Micheletti G, Depaulis A, Rumbach L, Water JM (1984) Enhancement of spike and wave discharges by GABAmimetic drugs in rats with spontaneous petit mal-like epilepsy. Neurosci Lett 44: 91–94PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • C. Marescaux
    • 1
    • 4
  • M. Vergnes
    • 2
  • R. Bernasconi
    • 3
  1. 1.Clinique NeurologiqueC.H.U.StrasbourgFrance
  2. 2.Centre de Neurochimie du CNRSL.N.B.C.StrasbourgFrance
  3. 3.Ciba-GeigyBaselSwitzerland
  4. 4.Clinique NeurologiqueHôpital CivilStrasbourg CedexFrance

Personalised recommendations