Skip to main content

Glutamate receptor antagonism: neurotoxicity, anti-akinetic effects, and psychosis

  • Conference paper
Recent Advances in Neuropharmacology

Part of the book series: Journal of Neural Transmission ((NEURAL SUPPL,volume 34))

Summary

There is evidence to suggest that glutamate and other excitatory amino acids play an important role in the regulation of neuronal excitation. Glutamate receptor stimulation leads to a non-physiological increase of intracellular free Ca2+. Disturbed Ca2+ homeostasis and subsequent radical formation may be decisive factors in the pathogenesis of neurodegenerative diseases.

Decreased glutamatergic activity appears to contribute to paranoid hallucinatory psychosis in schizophrenia and pharmacotoxic psychosis in Parkinson’s disease. It has been suggested that a loss of glutamatergic function causes dopaminergic over-activity. Imbalances of glutamatergic and dopaminergic systems in different brain regions may result in anti-akinetic effects or the occurrence of psychosis. The simplified hypothesis of a glutamatergic- dopaminergic (im)-balance may lead to a better understanding of motor behaviour and psychosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Benes FM, Davidson J, Bird ED (1986) Quantitative cytoarchitectural studies of the cerebral cortex of schizophrenics. Arch Gen Psychiatry 43: 31–35

    Article  PubMed  CAS  Google Scholar 

  • Danielczyk W (1973) Die Behandlung von akinetischen Krisen. Med Welt 24: 1278

    PubMed  CAS  Google Scholar 

  • Deakin JWF, Slater P, Simpson MDC, Gilchrist AC, Skan WJ, Royston MC, Reynolds GP, Cross AJ (1989) Frontal cortical and left temporal glutamatergic dysfunction in schizophrenia. J Neurochem 52: 1781–1786

    Article  PubMed  CAS  Google Scholar 

  • Garthwaite G, Garthwaite J (1987) Receptor-linked ionic channels mediate N-methyl-D-aspartate neurotoxicity in rat cerebellar slices. Neurosci Lett 83: 241–246

    Article  PubMed  CAS  Google Scholar 

  • Gibson GE, Peterson C (1987) Calcium and the aging nervous system. Neurobiol Aging 8: 329–343

    Article  PubMed  CAS  Google Scholar 

  • Harrison PJ, McLaughlin D, Kerwin RW (1991) Decreased hippocampal expression of a glutamate receptor gene in schizophrenia. Lancet i: 450–452

    Google Scholar 

  • Jakob H, Beckmann H (1986) Prenatal developmental disturbances in the limbic allocortex in schizophrenics. J Neural Transm 65: 303–326

    Article  PubMed  CAS  Google Scholar 

  • Kerwin RW, Patel S, Meldrum BS, Czudek C, Reynolds GP (1988) Asymmetrical loss of glutamate receptor subtype in left hippocampus in schizophrenia. Lancet i: 583–584

    Google Scholar 

  • Kim JS, Kornhuber HH, Schmid-Burgk W, Holzmüller B (1980) Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis on schizophrenia. Neurosci Lett 20: 379–382

    Article  PubMed  CAS  Google Scholar 

  • Kornhuber J, Mack-Burkhardt F, Riederer P, Hebenstreit GF, Reynolds GP, Andrews HB, Beckmann H (1989) [3H]MK-801 binding sites in postmortem brain regions of schizophrenic patients. J Neural Transm 77: 231–236

    Google Scholar 

  • Kornhuber J, Riederer P, Beckmann H (1990) The dopaminergic and glutamatergic systems in schizophrenia. In: Bunney WE, Hippius H, Laakmann G, Schmauß M (eds) Neuropsychopharmacology. Springer, Berlin Heidelberg New York Tokyo, pp 714–720

    Chapter  Google Scholar 

  • Kurumaji A, Ishimaru M, Torn M (1990) Quisqualate receptors in post-mortem brain of chronic schizophrenics. Proc Kyoto: New Trends in Schizophrenia and Mood Disorders Research, p 29

    Google Scholar 

  • Löschmann PA, Lange KW, Kunow M, Rettig KJ, Jähnig P, Honore T, Turski L, Wachtel H, Jenner P, Marsden CD (1991) Synergism of the AMPA-antagonist NBQX and the NMDA-antagonist CPP with L-Dopa in models of Parkinson’s disease. J Neural Transm [PD-Sect] 3: 203–213

    Article  Google Scholar 

  • Meldrum B, Garthwaite J (1990) Excitatory amino acid neurotoxicity and neurodegenerative disease. Trends Pharmacol Sci 11: 379–387

    Article  PubMed  CAS  Google Scholar 

  • Nishikawa T, Takashima M, Torn M (1983) Increased 3H-kainic acid binding in the prefrontal cortex in schizophrenia. Neurosci Lett 40: 245–250

    Article  PubMed  CAS  Google Scholar 

  • Reynolds IR, Miller RJ (1988) Tricyclic antidepressants block N-methyl-D-aspartate receptors: similarities to the action of zinc. Br J Pharmacol 95: 95–102

    PubMed  CAS  Google Scholar 

  • Riederer P, Berger W (1991) Locomotion and behaviour: the interaction of loops and transmitter. Proc 5th World Congress of Psychiatry, Florence (in press)

    Google Scholar 

  • Riederer P, Kornhuber J, Gerlach M, Danielczyk W, Youdim MBH (1991) Glutamatergic-dopaminergic imbalance in Parkinson’s disease and paranoid hallucinatory psychosis. Proc Int Workshop on Parkinson’s Disease, Berlin. Medicom Europe BV (in press)

    Google Scholar 

  • Schwab RS, England AC, Poskanzer DC, Young RR (1969) Amantadine in the treatment of Parkinson’s disease. J Am Med Assoc 208: 1168

    Article  CAS  Google Scholar 

  • Sherman AD, Davidson AT, Baruah S, Hegwood TS, Waziri R (1991) Evidence of glutamatergic deficiency in schizophrenia. Neurosci Lett 121: 77–80

    Article  PubMed  CAS  Google Scholar 

  • Suga I, Kobayashi T, Ogata H, Toru M (1990) Increased 3H-MK801 binding sites in post-mortem brains of chronic schizophrenic patients. Proc Kyoto: New Trends in Schizophrenia and Mood Disorders Research, p28

    Google Scholar 

  • Svensson A, Pileblad E, Carlsson M (1991) A comparison between the non-competitive NMDA antagonist dizocilpine (MK-801) and the competitive NMDA antagonist D-CPPene with regard to dopamine turnover and locomotor-stimulatory properties in mice. J Neural Transm [Gen Sect] 85: 117–129

    Article  CAS  Google Scholar 

  • Watkins JC, Kroogsgaard-Larsen P, Honore T (1990) Structure-activity relationships in the development of excitatory amino acid receptor agonists and competitive antagonists. Trends Pharmacol Sci 11: 25–33

    Article  PubMed  CAS  Google Scholar 

  • Weissman AD, Casanova MF, Kleinman JE, London ED, DeSouza EB (1991) Selective loss of cerebral cortical sigma, but not PCP binding sites in schizophrenia. Biol Psychiatry 29: 41–54

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag

About this paper

Cite this paper

Riederer, P., Lange, K.W., Kornhuber, J., Jellinger, K. (1991). Glutamate receptor antagonism: neurotoxicity, anti-akinetic effects, and psychosis. In: Bönisch, H., Graefe, KH., Langer, S.Z., Schömig, E. (eds) Recent Advances in Neuropharmacology. Journal of Neural Transmission, vol 34. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9175-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9175-0_26

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82300-2

  • Online ISBN: 978-3-7091-9175-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics