Selective destruction of preganglionic sympathetic nerves by antibodies to acetylcholinesterase

  • S. Brimijoin
  • V. A. Lennon
Conference paper
Part of the Journal of Neural Transmission book series (NEURAL SUPPL, volume 34)


Systemic injection of monoclonal antibodies to neural acetylcholinesterase in rats causes permanent, complement-mediated destruction of presynaptic fibers in sympathetic ganglia and adrenal medulla. Ptosis, hypotension, bradycardia, and postural syncope ensue. In sympathetic ganglia, cholinergic synapses disappear, but postganglionic adrenergic neurones remain structurally and functionally normal. Somatic motor and parasympathetic systems are also spared. This model of selective cholinergic autoimmunity is a new tool for autonomic physiology and may be relevant to the pathogenesis of human dysautonomias.


Sympathetic Ganglion Superior Cervical Ganglion Motor Endplate Selective Destruction Cholinergic Synapse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atack JR, Perry EK, Bonham JR, Perry RH, Tomlinson BE, Candy J, Blessed G, Fairbairn A (1983) Molecular forms of acetylcholinesterase in senile dementia of Alzheimer type: selective loss of the intermediate (10S) form. Neurosci Lett 40: 199–204PubMedCrossRefGoogle Scholar
  2. Brimijoin S,t Rakonczay Z (1986) Immunology and molecular biology of the cholinesterases. Int Rev Neurobiol 28: 363–410CrossRefGoogle Scholar
  3. Brimijoin S, Lennon VA (1990) Autoimmune preganglionic sympathectomy induced by acetylcholinesterase antibodies. PNAS 87: 9630PubMedCrossRefGoogle Scholar
  4. Brimijoin S, Balm M, Hammond P, Lennon VA (1990) Selective complexing of acetylcholinesterase in brain by intravenously administered monoclonal antibody. J Neurochem 54: 236–241PubMedCrossRefGoogle Scholar
  5. Burnstock G, Evans B, Gannon BJ, Heath JW, James V (1971) A new method of destroying adrenergic nerves in adult animals using guanethidine. Br J Pharmacol 43: 295–301PubMedGoogle Scholar
  6. Fishman EB, Siek GC, MacCallum RD, Bird ED, Volicer L, Marquis JK (1986) Distribution of the molecular forms of acetylcholinesterase in human brain: alterations in dementia of the Alzheimer type. Ann Neurol 19: 246–252PubMedCrossRefGoogle Scholar
  7. Hammond P, Brimijoin S (1988) Acetylcholinesterase in Huntington’s and Alzheimer’s diseases: simultaneous enzyme assay and immunoassay of multiple brain regions. J Neurochem 50: 1111–1116PubMedCrossRefGoogle Scholar
  8. Isola W, Bacq ZM (1946) Innervation sympathique adrénergique de la musculature lisse des paupières. Arch Int Physiol 54: 30–48PubMedCrossRefGoogle Scholar
  9. Johnson EM, O’Brien F (1976) Evaluation of the permanent sympathectomy produced by the administration of guanethidine to adult rats. J Pharmacol Exp Ther 196: 53–61PubMedGoogle Scholar
  10. Koelle GB (1963) Cytological distributions and physiological functions of cholinesterases. In: Koelle GB (ed) Cholinesterases and anticholinesterase agent. Springer, Berlin Heidelberg, pp 187–298Google Scholar
  11. Levi-Montalcini R, Angeletti R (1966) Immunosympathectomy. Pharmacol Rev 18: 619–628PubMedGoogle Scholar
  12. Raisman G, Field PM, Ostberg AJC, Iversen LL, Zigmond RE (1974) A quantitative ultrastructural and biochemical analysis of the process of reinnervation of the superior cervical ganglion in the adult rat. Brain Res 71: 1–16PubMedCrossRefGoogle Scholar
  13. Rakonczay Z, Brimijoin S (1986) Monoclonal antibodies to rat brain acetylcholinesterase: comparative affinity for soluble and membrane-associated enzyme and for enzyme from different vertebrate species. J Neurochem 46: 280–287PubMedCrossRefGoogle Scholar
  14. Rakonczay Z, Brimijoin S (1988) Biochemistry and pathophysiology of the molecular forms of cholinesterases. Subcell Biochem 12: 335–378PubMedGoogle Scholar
  15. Skau KA (1983) The acetylcholinesterase abnormality in dystrophic mice is a reflection of a maturational defect. Brain Res 276: 192–194PubMedCrossRefGoogle Scholar
  16. Toutant J-P, Massoulié J (1988) Cholinesterase: tissue and cellular distribution of molecular forms and their physiological regulation. Handbook Exp Pharmacol 86: 225–265CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • S. Brimijoin
    • 1
  • V. A. Lennon
    • 2
  1. 1.Department of PharmacologyMayo ClinicRochesterUSA
  2. 2.Department of Immunology and NeurologyMayo ClinicRochesterUSA

Personalised recommendations