Advertisement

Influence of antidepressant drugs on seizure susceptibility and the anticonvulsant activity of valproate in mice

  • Z. Kleinrok
  • J. Gustaw
  • S. J. Czuczwar
Conference paper
Part of the Journal of Neural Transmission book series (NEURAL SUPPL, volume 34)

Summary

The tricyclic antidepressants, amitriptiline (20–30 mg/kg, i.p.) and imipramine (30–40mg/kg), provided a significant protection against electro- convulsions (12 mA, 0.2 s stimulus duration) but desipramine (up to 40 mg/kg) remained ineffective. On the other hand, all drugs, amitriptiline (10mg/kg), desipramine (20mg/kg), and imipramine (20mg/kg) distinctly potentiated the protective efficacy of valproate against maximal electroshock, reducing its ED 50 values from 255 mg/kg to 150, 135, and 128 mg/kg, respectively. In one case the plasma valproate level was measured and it was evident that desipramine (20 mg/kg) did not affect the plasma level of this antiepileptic.

Keywords

Antidepressant Drug Anticonvulsant Activity Protective Efficacy Seizure Susceptibility Maximal Electroshock Seizure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen G, Ensor CR, Bohner BA (1954) A facilitative action of reserpine on the central nervous system. Proc Soc Exp Biol 86: 507–510PubMedGoogle Scholar
  2. Czuczwar SJ, Turski L, Schwarz M, Turski WA, Kleinrok Z (1984) Effects of excitatory amino-acid antagonists on the anticonvulsant action of phenobarbital or diphenylhydantoin in mice. Eur J Pharmacol 100: 357–362PubMedCrossRefGoogle Scholar
  3. Czuczwar SJ, Cavalheiro EA, Turski L, Turski WA, Kleinrok Z (1985) Phosphonic analogues of excitatory amino acids raise the threshold for maximal electroconvulsions in mice. Neurosci Res 3: 86–90PubMedCrossRefGoogle Scholar
  4. Dallos V, Heathfield K (1969) Iatrogenic epilepsy due to antidepressant drugs. Br Med J 4: 80–82PubMedCrossRefGoogle Scholar
  5. Fischer W, Müller M (1988) Pharmacological modulation of central monoaminergic systems and influence on the anticonvulsant effectiveness of standard antiepileptics in maximal electroshock seizure. Biomed Biochim Acta 47: 631–645PubMedGoogle Scholar
  6. Fromm GH, Amores CY, Thies W (1972) Imipramine in epilepsy. Arch Neurol 27: 198–204PubMedCrossRefGoogle Scholar
  7. Fromm GH, Wessel HB, Glass JD, Alvin JD, Van Horn G (1978) Imipramine in absence and myoclonic-astatic seizures. Neurology 28: 953–957PubMedGoogle Scholar
  8. Glowinski J, Axelrod J (1964) Inhibition of uptake of tritiated noradrenaline in the intact rat brain by imipramine and structurally related compounds. Nature 204: 1318–1319PubMedCrossRefGoogle Scholar
  9. Janusz W, Kleinrok Z (1989) The role of the central serotonergic system in pilocarpine- induced seizures: receptor mechanisms. Neurosci Res 7: 144–153PubMedCrossRefGoogle Scholar
  10. Kilian M, Frey H-H (1973) Central monoamines and convulsive thresholds in mice and rats. Neuropharmacology 12: 681–692PubMedCrossRefGoogle Scholar
  11. Kleinrok Z, Czuczwar SJ, Kozicka M (1980) Effect of dopaminergic and GABA-ergicdrugs given alone or in combination on the anticonvulsant action of phenobarbital and diphenylhydantoin in the electroshock test in mice. Epilepsia 21: 519–529PubMedCrossRefGoogle Scholar
  12. Lange SC, Julien RM, Fowler GW (1976) Biphasic effects of imipramine in experimental models of epilepsy. Epilepsia 17: 183–196PubMedCrossRefGoogle Scholar
  13. Lehmann AG (1970) Psychopharmacology of the response to noise with special reference to audiogenic seizure in mice. In: Welch BL, Welch AS (eds) Physiological effects of noise. Plenum Press, New York, pp 227–257Google Scholar
  14. Leyberg JT, Denmark JC (1959) The treatment of depressive states with imipramine hydrochloride ( Tofranil ). J Ment Sei 105: 1123–1126Google Scholar
  15. Litchfield JT, Wilcoxon F (1949) A simplified method of evaluating dose-effect experiments. J Pharmacol Exp Ther 96: 99–113PubMedGoogle Scholar
  16. Löscher W, Czuczwar SJ (1985) Evaluation of the 5-hydroxytryptamine receptor agonist 8-hydroxy-2-(DI-n-propylamino)tetralin in different rodent models of epilepsy. Neurosci Lett 60: 201–206PubMedCrossRefGoogle Scholar
  17. Löscher W, Czuczwar SJ (1986) Studies on the involvement of dopamine D-l and D-2 receptors in the anticonvulsant effect of dopamine agonists in various rodent models of epilepsy. Eur J Pharmacol 128: 55–65PubMedCrossRefGoogle Scholar
  18. Löscher W, Czuczwar SJ (1987) Comparison of drugs with different selectivity for central ar and a2-adrenoceptors in animal models of epilepsy. Neurosci Res 1: 165–172Google Scholar
  19. Malatynska E, Knapp RJ, Ikeda M, Yamamura HI (1988) Antidepressants and seizure- interactions at the GABA-receptor chloride-ionophore complex. Life Sei 43: 303–307CrossRefGoogle Scholar
  20. Maynert EW (1969) The role of biochemical and neurohumoral factors in the laboratory evaluation of antiepileptic drugs. Epilepsia 10: 145–162PubMedCrossRefGoogle Scholar
  21. McKenzie GM, Soroko FE (1972) The effects of apomorphine, (+)-amphetamine and L-DOPA on maximal electroshock convulsions — A comparative study in the rat and mouse. J Pharm Pharmacol 24: 696–701PubMedCrossRefGoogle Scholar
  22. Meldrum BS, Anlezark GM, Trimble M (1975) Drugs modifying dopaminergic activity and behavior, the EEG and epilepsy in Papio papio. Eur J Pharmacol 32: 203–213PubMedCrossRefGoogle Scholar
  23. Rehavi M, Sokolovsky M (1978) Multiple binding sites of tricyclic antidepressant drugs to mammalian receptors. Brain Res 149: 525–529PubMedCrossRefGoogle Scholar
  24. Reynolds IJ, Miller RJ (1988) Tricyclic antidepressants block N-methyl-D-aspartate receptors: similarities to the action of zinc. Br J Pharmacol 95: 95–102PubMedGoogle Scholar
  25. Trimble MR (1978) Non-monoamine oxidase inhibitor antidepressants and epilepsy. Epilepsia 19: 241–250PubMedCrossRefGoogle Scholar
  26. Trimble MR, Meldrum B (1977) Seizure activity in photosensitive baboons following antidepressant drugs and the role of serotoninergic mechanisms. Psychopharmacology 51: 159–164PubMedCrossRefGoogle Scholar
  27. Urbanska E, Dziki M, Kleinrok Z, Czuczwar SJ, Turski WA (1991) Influence of MK- 801 on the anticonvulsant activity of common antiepileptics. Eur J Pharmacol 200: 277–282PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Z. Kleinrok
    • 1
  • J. Gustaw
    • 1
  • S. J. Czuczwar
    • 1
  1. 1.Department of PharmacologyMedical SchoolLublinPoland

Personalised recommendations