Advertisement

The effects of electroconvulsive shock on catecholamine function in the locus ceruleus and hippocampus

  • N. Weiner
  • M. A. Hossain
  • J. M. Masserano
Conference paper
Part of the Journal of Neural Transmission book series (NEURAL SUPPL, volume 34)

Summary

Repeated electroconvulsive shock (ECS) treatment (once per day for 7 days) produced a significant increase in tyrosine hydroxylase activity, GTP-cyclohydrolase activity and tetrahydrobiopterin (BH4) levels in the locus ceruleus and hippocampus from 1 to 4 days after the last treatment. These changes may be responsible for, or contribute to, the antidepressant effect of ECS treatment.

Keywords

Tyrosine Hydroxylase Antidepressant Effect Locus Ceruleus Electroconvulsive Shock Tyrosine Hydroxylase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bergstrom DA, Kellar KJ (1979) Effect of electroconvulsive shock on monoaminergic receptor binding sites in rat brain. Nature 278: 464–466PubMedCrossRefGoogle Scholar
  2. Black IB (1975) Increased tyrosine hydroxylase activity in frontal cortex and cerebellum after reserpine. Brain Res 95: 170–176PubMedCrossRefGoogle Scholar
  3. Duch DS, Bowers SW, Woolf JH, Nichol CA (1984) Bioterin cofactor biosynthesis: GTP cyclohydrolase, neopterin and biopterin in tissues and body fluids of mammalian species. Life Sci 35: 1895–1901Google Scholar
  4. Fukushima T, Nixon JC (1980) Analysis of reduced forms of biopterin in biological tissues and fluids. Anal Biochem 102: 176–188PubMedCrossRefGoogle Scholar
  5. Gleiter CH, Nutt DJ (1989) Chronic electroconvulsive shock and neurotransmitter receptors — an update. Life Sci 44: 985–1006PubMedCrossRefGoogle Scholar
  6. Glue P, Costello MJ, Pert A, Mele A, Nutt DJ (1990) Regional neurotransmitter responses after acute and chronic electroconvulsive shock. Psychopharmacology 100: 60–65PubMedCrossRefGoogle Scholar
  7. Heal DJ, Akagi H, Bowdler JM, Green AR (1981) Repeated electroconvulsive shock attenuates clonidine-induced hypoactivity in rodents. Eur J Pharmacol 75: 231–237PubMedCrossRefGoogle Scholar
  8. Hendley ED (1976) Electroconvulsive shock and norepinephrine uptake kinetics in the rat brain. Psychopharmacol Commun 2 (1): 17–25PubMedGoogle Scholar
  9. Hendley ED, Welch BL (1974) Electroconvulsive shock: sustained decrease in norepinephrine uptake affinity in a reserpine model of depression. Life Sci 16: 45–54CrossRefGoogle Scholar
  10. Kety SS, Javoy F, Thierry A, Julou L, Glowinski J (1967) A sustained effect of electroconvulsive shock on the turnover of norepinephrine in the central nervous system of the rat. Proc Natl Acad Sci 58: 1249–1254PubMedCrossRefGoogle Scholar
  11. Lee EHY, Mandell AJ (1985) Relationships between drug-induced changes in tetahydrobiopterin and biogenic amine concentrations in rat brain. J Pharmacol Exp Ther 234: 141–146PubMedGoogle Scholar
  12. Levine RA, Miller LP, Lovenberg W (1981) Tetrahydrobiopterin in straitum: localization in dopamine nerve terminals and role in catecholamine synthesis. Science 214: 919–921PubMedCrossRefGoogle Scholar
  13. Mandell AJ, Bullard WP, Yellin JB, Russo PV (1980) The influence of D-amphetamine of rat brain striatal reduced biopterin concentration. J Pharmacol Exp Ther 213: 569–574PubMedGoogle Scholar
  14. Masserano JM, Takimoto GS, Weiner N (1981) Electroconvulsive shock increases tyrosine hydroxylase activity in the brain and adrenal gland of the rat. Science 214: 662–665PubMedCrossRefGoogle Scholar
  15. Modigh K (1976) Long-term effects of electroconvulsive shock therapy on synthesis turnover and uptake of brain monoamines. Psychopharmacology 49: 179–185PubMedCrossRefGoogle Scholar
  16. Pile A, Vetulani J (1982) Depression by chronic electroconvulsive treatment of clonidine hypotherma and [3H]clonidine binding to rat cortical membranes. Eur J Pharmacol 80: 109–113CrossRefGoogle Scholar
  17. Stockmeier CA, McLeskey SW, Blendy JA, Armstrong NR, Kellar KJ (1987) Electroconvulsive shock but not antidepressant drugs increases α1-adrenoceptor binding sites in rat brain. Eur J Pharmacol 139: 159–166CrossRefGoogle Scholar
  18. Vetulani J, Sulser F (1975) Action of various antidepressant treatments reduces reactivity of noradrenergic cyclic AMP-generating system in limbic forebrain. Nature 257: 495–496PubMedCrossRefGoogle Scholar
  19. Vetulani J, Stawarz RJ, Dingell JV, Sulser F (1976) A possible common mechanism of action of antidepressant treatments. Naunyn-Schmiedebergs Arch Pharmacol 293: 109–114PubMedCrossRefGoogle Scholar
  20. Vetulani J, Antkiewicz-Michaluk L, Rokosz-Pelc A, Pile A (1983) Chronic electroconvulsive treatment enhances the density of [3H]prazosin binding sites in the central nervous system of the rat. Brain Res 275: 392–395PubMedCrossRefGoogle Scholar
  21. Viveros OH, Lee CL, Abou-Donia MM, Nixon JC, Nichol CA (1981) Biopterin cofactor biosynthesis: independent regulation of GTP cyclohydroxylase in adrenal medulla and cortex. Science 213: 349 - 350PubMedCrossRefGoogle Scholar
  22. Zigmond RE (1978) Tyrosine hydroxylase activity in noradrenergic neurons of the locus coeruleus after reserpine administration: sequential increase in cell bodies and nerve terminals. J Neurochem 32: 23–29CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • N. Weiner
    • 1
  • M. A. Hossain
    • 1
  • J. M. Masserano
    • 1
  1. 1.Department of Pharmacology, C-236University of Colorado Health Sciences CenterDenverUSA

Personalised recommendations