Clinical Experience with Different Interstitial Hyperthermia Techniques

  • C. Marchal
  • M. Pernot
  • S. Hoffstetter
  • P. Bey


Modern brachytherapy procedures were designed and developed in France by Pierquin and Chassagne (1966–1967) using iridium 192. The use of polyethylene tubes adapted for afterloading techniques has greatly simplified brachytherapy, allowing better implantations covering larger volumes, which explains its present success.


Radiat Oncol Biol Phys Microwave Antenna Residual Tumor Volume Tongue Tumor Magnetic Seed 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aristizabal SA, Oleson JR (1984) Combined interstitial irradiation and localized current field hyperthermia: Results and conclusions from clinical studies. Cancer Res 44: 4757–4760Google Scholar
  2. Astrahan MA, Norman A (1982) A localized current field hyperthermia system for use with Ir-192 interstitial implants. Med Phys 9: 419–424PubMedCrossRefGoogle Scholar
  3. Bicher HA, Wolfstein RW, Fingerhut AG, Frey HA, Lewinsky BS (1984) An effective fractionation regime for interstitial thermoradiotherapy: Preliminary clinical results. In: Overgaard J (ed) Hyperthermic Oncology, vol 1. Taylor & Francis, London, Philadelphia, pp 575–578Google Scholar
  4. Brezovich IA, Atkinson WJ, Lilly MB (1984) Local hyperthermia with interstitial techniques. Cancer Res 44: 4652–4756Google Scholar
  5. Brezovich IA, Young JH (1981) Hyperthermia with implanted electrodes. Med Phys 9: 79–84CrossRefGoogle Scholar
  6. Cetas TC, Hevezi JM, Manning MR, Ozimek EJ (1982) Dosimetry of interstitial thermoradiotherapy. Nati Cancer Inst Monogr 61: 505–507Google Scholar
  7. Chan KW, Chou C, McDougal JA, Luk KH, Vora NL (1989) Changes in heating patterns of interstitial microwave antenna arrays at different insertion depths. Int J Hyperthermia 5 (4): 499–507PubMedCrossRefGoogle Scholar
  8. Chassagne D, Pierquin B (1966) La plésiocuriethérapie des cancers du vagin par moulage plastique à l’iridium 192. J Radiol Electrol 46: 89–93Google Scholar
  9. Cosset JM, Brule JM, Salama AM, Damia E, Dutreix J (1982) Low-frequency (0.5 MHz) contact and interstitial techniques for clinical hyperthermia. In: Biomedical Thermology. Alan R. Liss Inc., New York, pp 649–657Google Scholar
  10. Cosset JM, Dutreix J, Gerbaulet A, Damia E (1985) L’association hyperthermie interstitielle-curiethérapie: Une technique de rattrapage des récidives en zones précédemment irradiées. In: Actualités Carcinologiques — Institut Gustave Roussy, Masson, Paris, pp 211–218Google Scholar
  11. Cosset JM, Dutreix J, Gerbaulet A, Damia E (1984) Combined interstitial hyperthermia and brachyterapy: The Institut Gustave Roussy experience. In: Overgaard J (ed) Hyperthermic Oncology, vol 1. Taylor & Francis, London, Philadelphia, pp 587–590Google Scholar
  12. Cosset JM, Dutreix J, Dufour J, Janoray P, Damia E, Haie C, Clarke D (1984) Combined interstitial hyperthermia and brachytherapy: Institut Gustave Roussy technique and preliminary results. Int J Radiat Oncol Biol Physics 10: 307–312CrossRefGoogle Scholar
  13. Cosset JM, Dutreix J, Haie C, Gerbaulet A, Janoray P, Dewar JA (1985) Interstitial thermoradiotherapy: A technical and clinical study of 29 implantations performed at the Institut Gustave Roussy. Int J Hyperthermia 1(1): 1, 3–13CrossRefGoogle Scholar
  14. Coughlin CT, Wong TZ, Strohbehn JW, Colacchio TA, Sutton JE, Belch RZ, Douple EB (1985) Intraoperative interstitial microwave-induced hyperthermia and brachytherapy. Int J Radiat Oncol Biol Phys 11: 1673–1678PubMedCrossRefGoogle Scholar
  15. Coughlin CT, Strohbehn JW, Ryan TP, Roberts DW, Colacchio TA, Douple EB (1989) Interstitial hyperthermia for deep seated malignancies. In: Proc 5th International Symposium on Hyperthermic Oncology, Kyoto, pp 596–597Google Scholar
  16. Desmukh R, Damento M, Demer L, Forsyth K, de Young D, Dewhirst M, Cetas TC (1984) Ferromagnetic alloys with curie temperatures near 50°C for use in hyper-thermic therapy. In: Overgaard J (ed) Hyperthermic Oncology, vol 1. Taylor & Francis, London, Philadelphia, pp 571–574Google Scholar
  17. Doss JD (1975) Use of RF fields to produce hyperthermia in animal tumors. Proceedings of International Symposium on Cancer Therapy by Hyperthermia and Radiation. ARC, Washington DC, pp 226–227Google Scholar
  18. Doss JD, McCabe A (1976) A technique for localized heating in tissue: An adjunct to tumor therapy. Medical Instrumentation 10: 16–20PubMedGoogle Scholar
  19. Dutreix J, Cosset JM, Salama M, Brule JM, Damia E (1982) Experimental studies of various heating procedures for clinical application of localized hyperthermia. In: Biomedical Thermology. Alan R Liss Inc, New York, pp 585–596Google Scholar
  20. Emami B, Marks J, Perez C, Nussbaum G, Leybovich L (1984) Treatment of human tumors with interstitial irradiation and hyperthermia. In: Overgaard J (ed) Hyper-thermic Oncology, vol 1. Taylor & Francis, London, Philadelphia, pp 583–586Google Scholar
  21. Emami B, Perez CA, Leybovich L, Straube W, Vongerichten D (1987) Interstitial thermoradiotherapy in treatment of malignant tumours. Int J Hyperthermia 3 (2): 107–118PubMedCrossRefGoogle Scholar
  22. Emami B (1990) Applied techniques and clinical practice of local external and interstitial hyperthermia. Mallickrodt Institute of Radiology, Radiation Oncology Center, Washington University School of Medicine, St. Louis, Missouri, U.S.A.Google Scholar
  23. Evans RG, Kimler BF, Morantz RA, Vats TS, Gemer LS, O’Kell V, Lowe N. A phase I-II study of the use fluosol-da 20% as an adjuvant radiation therapy in the treatment of primary high-grade brain tumors. Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS, Brain Tumor Institute of Kansas City, MO, and Alpha Therapeutics Corporation, Los Angeles, CA, U.S.A.Google Scholar
  24. Frazier OH, Corry PM (1984) Induction of hyperthermia using implanted electrodes. Cancer Res 44: 4854–4866Google Scholar
  25. Gautherie M (1989) Interstitial hyperthermia: State of the art and prospects. Proc 5th International Symposium on Hyperthermic Oncology, Kyoto, pp 63–68Google Scholar
  26. Gautherie M (1988) Clinical evaluation of the minerve hyperthermia system: Synthesis, T.V.P processGoogle Scholar
  27. Handl-Zeller L (1989) Personnal communicationGoogle Scholar
  28. Handl-Zeller L, Schreier K, Kärcher KH, Budihna M, Lesnicar H. First clinical experience with the Viennese interstitial two-zone hyperthermia system. O. Handl Ges.m.b.h., Hetzendorferstr. 165A, A-1130 Wien, Austria; Inst. of Oncology, Zaloska 2, YU-61105 Ljubljana, YugoslaviaGoogle Scholar
  29. Handl-Zeller L, Kärcher KH, Schreier K, Handl O (1987) Beitrag zur Optimierung interstitieller Hyperthermie-Systeme. Strahlentherapie 163: 460–467Google Scholar
  30. Handl-Zeller L (1987) Entwicklung und Einführung neuer interstitieller Hyperthermie-Systeme. In: Hammer J, Kärcher KH (Hrsg) Forschritte in der interstitiellen und intrakavitären Strahlentherapie. Zuckschwerdt Verlag, WienGoogle Scholar
  31. Handl-Zeller L, Kärcher KH (1987) Hyperthermie als adjuvante Behandlung bei der Radiatio. In: Neugebauer H (Hrsg) Was gibt es Neues in der Medizin? Dr. Peter Müller Verlag, WienGoogle Scholar
  32. Handl-Zeller L, Kärcher KH, Lesnicar H, Budihna M, Schreier K (1987) Newly developed liquid heated interstitial hyperthermia system KHS-9/W18. Int J Hyperthermia 3: 567Google Scholar
  33. Handl-Zeller L, Kärcher KH, Schreier K, Budihna M, Lesnicar H (1988) The interstitial Viennese system KHS-9/W18: Homogeneous hyperthermia with simultaneous radiation in deep seated tumors with integrated heat protection of normal tissue. In: Kärcher KH (ed) Progress in RadioOncology IV, Proc of the 4th Meeting on Progress in Radio-OncologyGoogle Scholar
  34. Handl-Zeller L, Schreier K, Kärcher KH, Budihna M, Lesnicar H (1988) First clinical experience with the Viennese interstitial two-zone hyperthermia system. Proc 5th International Symposium on Hyperthermic Oncology, Kyoto, p 337Google Scholar
  35. Hoffstetter S, Malissard L, Forçard JJ, Pernot M (1986) Carcinome épidermoïde de la base de langue (à propos de 108 cas traités au Centre Alexis Vautrin). J Eur Radiothérapie 7: 101–110Google Scholar
  36. Inoue T, Masaki N, Ozeki S, Ikeda H, Nishiyama K, Matayoshi Y, Kozuka T (1989) Clinical experience of interstitial hyperthermia combined with external radiation using MA251 interstitial applicator. Proc 5th International Symposium on Hyperthermic Oncology, Kyoto, pp 598–599Google Scholar
  37. Lee DJ, O’Neil MJ, Lam KS, Rostock R, Lam WC (1986) A new design of microwave interstitial applicators for hyperthermia with improved treatment volume. Int J Radiat Oncol Biol Phys 12: 2003Google Scholar
  38. Lilly MB, Brezovich IA, Atkinson WJ (1985) Hyperthermia induction with thermally self-regulated ferromagnetic implants. Radiology 154: 243–244PubMedGoogle Scholar
  39. Lin JC, Wang Y (1987) Interstitial microwave antennas for thermal therapy. Int J Hyperthermia 3: 37–47PubMedCrossRefGoogle Scholar
  40. Manning MR, Cetas TC, Miller RC, Oleson JR, Connor WG, Gerner EW (1982) Clinical hyperthermia: Results of a phase I trial employing hyperthermia alone or in combination with external beam or interstitial radiotherapy. Cancer 49: 205–216PubMedCrossRefGoogle Scholar
  41. Marchai C, Bey P, Escanye JM, Itty C, Hoffstetter S, Robert J (1983) 434 MHz microwave hyperthermia device applied in cancer therapy. J Eur Radiotherapy 4: 919Google Scholar
  42. Marchai C, Hoffstetter S, Bey P, Pernot M, Gaulard ML (1985) Development of a new interstitial method of heating which can be used with conventional after-loading brachytherapy techniques using Ir 192. Strahlentherapie 161: 523–557Google Scholar
  43. Marchai C, Bey P, Hoffstetter S, Roussey C, Nadi M, Gaulard ML (1986) Interstitial hyperthermia using 27.12 MHz string antennas. 8th European Meeting of E.S.H.O. Tiberias (Israel), 22nd-25th SeptemberGoogle Scholar
  44. Marchal C, Nadi M, Hoffstetter S, Bey P, Pernot M, Prieur G (1989) Practical method of heating operating at 27.12 MHz. Int J Hyperthermia 5: 451–466PubMedCrossRefGoogle Scholar
  45. Mazeron JJ, Crook J, Benk V, Walop W, Pierquin B (1989) Iridium-192 implantation for Tl and T2 epidermoid carcinomas of the mobile tongue: The Creteil experience. Proc 31th ASTRO Meeting: 22Google Scholar
  46. Mechling JA, Strohbehn JW (1986). A theoretical comparison of the temperature distributions produced by three interstitial hyperthermia systems. Int J Radiat Oncol Biol Phys 12: 2137–2149PubMedCrossRefGoogle Scholar
  47. Meredith RF, Brezovich I, Weppelmann B, Kim R, Salter M (1979) Interstitial thermoradiotherapy for head and neck cancer using brachytherapy catheters for perfusion heating. Proc 31th ASTRO Meeting: 22Google Scholar
  48. Merrick HW, Milligan AJ, Woldenberg LS, Ahuja RK, Dobelbower RR (1987) Intraoperative interstitial hyperthermia in conjunction with intraoperative radiation therapy in a radiation-resistant carcinoma of the abdomen: Report on the feasibility of a new technique. J Surg Oncol 36: 4851CrossRefGoogle Scholar
  49. Mitchell JB (1989) Radiobiology and Clinical Radiation Therapy: Mechanisms of Repair. Radiation Biology Section, Radiation Oncology Branch, National Cancer Institute, BethesdaGoogle Scholar
  50. Nadi M, Marchai C, Tosser AJ, Roussey C, Gaulard ML (1988) New interstitial hyperthermia technique at 27 MHz. Innov Tech Biol Med 9: 105–115Google Scholar
  51. Nadi M, Tosser AJ, Marchai C (1987) New interstitial hyperthermia using insulated wires at 27.12 MHz. In: Proceed IEEE/ Ninth Annual Conf of the EMBS, Nov. 13–16, 1987, Boston, MA, U.S.A.Google Scholar
  52. Oleson JR, Manning MR, Sim DA, Heuzinkueld RS, Aristizabal SA, Cetas TC, Hevez JM, Connor WG (1984) A review of the University of Arizona. Human clinical experience. In: Vaeth JM (ed) Frontiers of Radiation Therapy and Oncology, pp 136–143Google Scholar
  53. Pernot M, Malissard L, Aletti P, Bey P, Hoffstetter S, Noel A (1980) Surdosage curiethérapique des tumeurs de la région veloamygdalienne. Technique par fils d’iridium sous tubes plastiques. J Eur Radiothér 1: 63–75Google Scholar
  54. Pernot M, Malissard L, Hoffstetter S, Forçard JJ (1988) Association de radiothérapie externe et de curiethérapie pour le traitement des cancers épidermoïdes oropharyngés. J Français D’ORL 37: 243–249Google Scholar
  55. Petrovich Z, Lam K, Astrahan M, Luxton G, Langholz B (1988) Interstitial radiotherapy combined with interstitial hyperthermia in the management of recurrent tumors. In: Recents in Cancer Research. Springer, Berlin, Heidelberg, New York, Tokyo, pp 136–140Google Scholar
  56. Pierquin B, Dutreix A (1967) Towards a new system in curietherapy (endocurietherapy and plesiocurietherapy with non-radioactive preparation). Br J Radiol 40: 184–186PubMedCrossRefGoogle Scholar
  57. Pierquin B, Wilson JF, Chassagne D (1987) Modern Brachytherapy. Masson Publishing, New YorkGoogle Scholar
  58. Puthawala AA, Nisar Syed AM, Sheikh Khalid MA, Rafie S, McNamara CS (1985) Interstitial hyperthermia for recurrent malignancies. Brachytherapy/Hyperthermia Oncology 1: 125–131Google Scholar
  59. Ross D, Hugander A (1988) Design and test of microwave interstitial applicators with improved longitudinal heating pattern. Int J Hyperthermia 4 (6): 609–615CrossRefGoogle Scholar
  60. Ryan TP, Strohbehn JW (1987) A comparison of power deposition for three microwave antennas used in hyperthermia cancer therapy. In: Proceed IEEE/Ninth Annual Conf of the EMBS, Nov. 13–16, 1987, Boston, MA, U.S.A.Google Scholar
  61. Satoh T, Stauffer PR (1988) Implantable helical coil microwave antenna for interstitial hyperthermia. Int J Hyperthermia 4 (5): 497–512PubMedCrossRefGoogle Scholar
  62. Schimm D, Cetas TC, Buechler D, Chen J, Dean S, Fletcher A, Haider S, Lutz W, Sinno R, Stauffer P, Cassady J (1989) Inductively heated, thermoregulating ferromagnetic seeds for interstitial thermoradiotherapy. Proc 5th International Symposium on Hyperthermic Oncology, Kyoto, pp 594–595Google Scholar
  63. Schreier K, Budihna M, Lesnicar H, HandlZeller L, Hand JW, Prier MV, Clegg ST (1990) Preliminary studies of interstitial hyperthermia using hot water. Int J Hyperthermia 6: 431–444PubMedCrossRefGoogle Scholar
  64. Schwan HP (1957) Electrical properties of tissues and cells. Adv Biol Med Phys 5: 153–165Google Scholar
  65. Stauffer PR, Satoh T, Suen SA, Fike JR (1987) Thermal dosimetry characterization of implantable helical coil microwave antennas. In: Proc IEEE/9th Annual Conf of the EMBS, Nov. 13–16, 1987, Boston, MA, U.S.A.Google Scholar
  66. Stauffer PR, Cetas TC, Fletcher AM, de Young DW, Dewhirst MW, Oleson JR, Roemer RB (1984) Magnetic induction heating of ferromagnetic implants for inducing localized hyperthermia in deep-seated tumors. IEEE Trans Biomed Eng 31: 235–251PubMedCrossRefGoogle Scholar
  67. Stea B, Cetas TC, Lutz W, Lulu B, Shetter A, Rossman K, Obbens E, Guthkelch N, Iacono R, Schimm D, Cassady J (1989) Interstitial thermoradiotherapy of brain tumors: A phase I clinical trial. Proc 31st ASTRO Meeting: 116Google Scholar
  68. Steeves RA (1989) The Radiologic Clinics of North America. Saunders, PhiladelphiaGoogle Scholar
  69. Strohbehn JW, et al (1979) An invasive microwave antenna for locally induced hyperthermia for cancer therapy. J Microwave Power 14: 181–186Google Scholar
  70. Strohbehn JW (1983) Temperature distributions from interstitial RF electrode hyperthermia systems: Theoretical predictions. Int J Radiat Oncol Biol Phys 9: 1655–1667PubMedGoogle Scholar
  71. Strohbehn JW, Mechling JA (1986) Interstitial techniques for clinical hyperthermia. In: James RJ, Hand JW (eds) Physical Techniques in Clinical Hyperthermia. Research Studies Press, chapter 5, pp 210–287Google Scholar
  72. Trembly BS (1985) The effects of driving frequency and antenna length on power deposition within a microwave antenna array used for hyperthermia. IEEE Trans Biomed Eng BME 32: 152–157CrossRefGoogle Scholar
  73. Visser AG, Van Rhoon GC, Hoogenboom J, de Ru V, Ledenvag PC (1986) (abstract) 27 MHz wire antennas for interstitial hyperthermia. 8th European Meeting of E.S.H.O., Tiberias (Israel), 22nd-25th September. Int J Hyperthermia 2: 413Google Scholar
  74. Vora NL, Forell B, Luk KH, Pezner RD, Lipsett JA, Desai KR, Wong JYC, Chou CK, Chan KW (1989) Interstitial thermoradiotherapy (IT) in recurrent and advanced malignant tumors. Seven years of experience. Proc 5th International Symposium on Hyperthermic Oncology, Kyoto, pp 588–590Google Scholar
  75. Waterman FM, Matthews J, Nerlinger RE (1987) Mapping temperature, specific absorption rate, and effective blood flow. In: Proc IEEE/Ninth Annual Conf of the EMBS, November 13–16, 1987, Boston, frequency interstitial hyperthermia com MA, U.S.A. bined with external radiotherapy. Proc 5thGoogle Scholar
  76. Yabumoto E, Suyama S, Shou K, Yamazaki T International Symposium on Hyperthermic (1989) A phase I clinical trial of radio- Oncology, Kyoto, pp 591–593Google Scholar

Copyright information

© Springer-Verlag/Wien 1992

Authors and Affiliations

  • C. Marchal
    • 1
  • M. Pernot
    • 2
  • S. Hoffstetter
    • 2
  • P. Bey
    • 2
  1. 1.Radiotherapy DepartmentCentre Alexis-VautrinVandoeuvre-Les-NancyFrance
  2. 2.Brachytherapy DepartmentCentre Alexis-VautrinVandoeuvre-Les-NancyFrance

Personalised recommendations