Skip to main content

Physical Aspects of Interstitial Hyperthermia

  • Chapter
Interstitial Hyperthermia

Abstract

Recent years have seen a developing interest in the use of hyperthermia, usually combined with radiotherapy or chemotherapy, in the treatment of some cancer patients. Experience has shown that induction of hyperthermia in patients in a predictable and sufficiently uniform manner is, in general, a major technical problem. One approach which has been investigated is to implant the sources of heat within the tumour and some surrounding normal tissue in ways analogous to techniques used in brachytherapy. This approach circumvents some of the problems encountered with most non-invasive methods such as limited penetration and excessive heating of intervening normal tissues (Gautherie, 1990). Interstitial methods are aften applicable to deep seated as well as superficial tumours.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Astrahan MA, George FW (1980) A temperature regulating circuit for experimental localized current field hyperthermia systems. Med Phys 7: 362–364

    Article  PubMed  CAS  Google Scholar 

  • Astrahan MA, Luxton G, Sapozink MD, Petrovich Z (1988) The accuracy of temperature measurement from within an interstitial microwave antenna. Int J Hyperthermia 4: 593–607

    Article  PubMed  CAS  Google Scholar 

  • Atkinson WJ, Brezovich IA, Chakraborty DP (1984) Usable frequencies in hyperthermia with thermal seeds. IEEE Trans Biomed Engng BME 31: 70–75

    Article  CAS  Google Scholar 

  • Baba M, Itani K, Naito H, Suzuki A, Minamitani H (1987) An estimation of the ferromagnetic seeds for hyperthermia. In: Onoyama Y (ed) Hyperthermic Oncology 86 in Japan. Mag Bros Inc, Tokyo, pp 135–136

    Google Scholar 

  • Brezovich IA (1988) Low frequency hyperthermia: Capacitive and ferromagnetic seed methods. In: Paliwal B, Hetzel FW, Dewhirst MW (eds) Biological, Physical and Clinical Aspects of Hyperthermia. American Institute of Physics, New York, pp 82–110

    Google Scholar 

  • Brezovich IA, Atkinson WJ, Chakraborty DP (1984) Temperature distributions in tumor models heated by self-regulating nickel-copper alloy thermoseeds. Med Phys 11: 145–152

    Article  PubMed  CAS  Google Scholar 

  • Brezovich IA, Lilly MB, Meredith RF, Weppelmann B, Henderson RA, Brawner Jr W, Salter MM (1990) Hyperthermia of pet animal tumours with self-regulating ferromagnetic thermoseeds. Int J Hyperthermia 6: 117–130

    Article  PubMed  CAS  Google Scholar 

  • Brezovich IA, Meredith RF, Henderson RA, Brawne WR, Weppelmann B, Salter MM (1989) Hyperthermia with water-perfused catheters. In: Sugahara T, Saito M (eds) Hyperthermic Oncology 1988, vol 1. Taylor and Francis, London, New York, Philadelphia, pp 809–810

    Google Scholar 

  • Burton C, Hill M, Walker AE (1971) The RF thermoseed — a thermally self regulating implant for the production of brain lesions. IEEE Trans Biomed Engng BME 18: 104–109

    Article  CAS  Google Scholar 

  • Chan KW, Chou CK, McDougall JA, Luk KH, Vora NL, Forell BW (1989) Changes in heating patterns of interstitial microwave antenna arrays at different insertion depths. Int J Hyperthermia 5: 499–507

    Article  PubMed  CAS  Google Scholar 

  • Chen JS, Poirier DR, Damento MA, Demer LJ, Biencaniello F, Cetas TC (1988) Development of Ni-4 wt. To Si thermoseeds for hyperthermia cancer treatment. J Biomaterials Res 22: 303–319

    Article  Google Scholar 

  • Chen MM, Holmes KR (1980) Micro-vascular contributions in tissue heat transfer. Ann NY Acad Sci 335: 137–151

    Article  PubMed  CAS  Google Scholar 

  • Cosset JM, Dutreix J, Haie C, Gerbaulet A, Janoray P, Dewar JA (1985) Interstitial thermoradiotherapy: A technical and clinical study of 29 implantations performed at the Institut Gustave-Roussy. Int J Hyperthermia 1: 3–13

    Article  PubMed  CAS  Google Scholar 

  • Crezee J, Lagendijk JJW (1990) Experimental verification of bioheat transfer theories: Measurement of temperature profiles around large artifical vessels in perfused tissue. Phys Med Biol 35: 905–923

    Article  PubMed  CAS  Google Scholar 

  • Demer LJ, Chen JS, Buechler D, Damento MA, Poirier DS, Cetas TC (1986) Ferromagnetic thermoseed materials for tumor hyperthermia. Proc. IEEE 8th Annual Conference of the Engineering in Medicine and Biology Society (vol 3 ). IEEE, New York, pp 1448–1453

    Google Scholar 

  • Denman DL, Foster AE, Cooper Lewis G, Redmond KP, Elson HR, Breneman JC, Kereiakes JG, Aron BS (1988) The distribution of power and heat produced by interstitial microwave antenna arrays: II. The role of antenna spacing and insertion depth. Int J Radiat Oncol Biol Phys 14: 537–545

    Article  PubMed  CAS  Google Scholar 

  • Deshmukh R, Damento M, Demer L, Forsyth K, DeYoung D, Dewhirst M, Cetas TC (1984) Ferromagnetic alloys with curie temperatures near 50°C for use in hyper-thermic therapy. In: Overgaard J (ed) Hyperthermic Oncology 1984, vol 1. Taylor and Francis, London, New York, Philadelphia, pp 571–574

    Google Scholar 

  • de Sieyes DC, Douple EB, Strohbehn JW, Trembly BS (1981) Some aspects of optimization of an invasive microwave antenna for local hyperthermia treatment of cancer. Med Phys 8: 174–183

    Article  PubMed  Google Scholar 

  • Dewey WC (1989) Dr. Eugene Robinson (1925–1983). Int J Radiat Oncol Biol Phys 16: 531–532

    Article  Google Scholar 

  • Doss JD (1975) Use of RF fields to produce hyperthermia in animal tumors. In: Wizenberg M.I, Robinson JE (eds) Proceedings of International Symposium on Cancer Therapy and Radiation, Washington, DC, April 28–30, 1975. American College of Radiology, Bethesda, MD, pp 226–227

    Google Scholar 

  • Doss JD, McCabe CW (1976) A technique for localized heating in tissue: An adjunct to tumor therapy. Med Instrum 10: 16–21

    PubMed  CAS  Google Scholar 

  • Durney CH (1987) Electromagnetic field generation and propagation. In: Field SB, Franconi C (eds) Physics and Technology of Hyperthermia. Martinus Nijhoff, Dordrecht, The Netherlands, pp 123–151

    Google Scholar 

  • Furse CM, Iskander MF (1989) Three-dimensional electromagnetic power deposition in tumors using interstitial antenna arrays. IEEE Trans Biomed Engng BME 36: 977–986

    Article  CAS  Google Scholar 

  • Gautherie M (ed) (1990) Methods of External Hyperthermic Heating. Springer, Berlin, Heidelberg, New York, Tokyo

    Google Scholar 

  • Geddes LA, Baker LE (1967) The specific resistance of biological material — a compendium of data for the biomedical engineer and physiologist. Med and Biol Engng 5: 271–293

    Article  CAS  Google Scholar 

  • Gerner EW, Connor WG, Boone MLM, Doss JD, Mayer EG, Miller RC (1975) The potential of localized heating as an adjunct to radiation therapy. Radiology 116: 433–439

    PubMed  CAS  Google Scholar 

  • Haider SA, Chen ZP, Cetas TC, Roemer RB (1987) Interstitial ferrmomagnetic implant heating: Practical guidelines for use. Proceedings of 9th Annual Conference of IEEE Engineering in Medicine and Biology Society (vol 3 ). IEEE, New York, pp 1626–1628

    Google Scholar 

  • Hand JW, Trembly BS, Prior MV (1991) Physics of interstitial hyperthermia: Radio-frequency and hot water tube techniques. In: Urano M, Douple E (eds) Hyperthermia and Oncology, vol 3: Interstitial Hyperthermia. VSP, Zeist

    Google Scholar 

  • Handl O, Handl-Zeller L, Schreier K, Lesnicar H, Budihna M (1989) Interstitial hyperthermia with microheat exchangers — system KHS-9/W18. In: Sugahara T, Saito M (eds) Hyperthermic Oncology 1988, vol 1. Taylor and Francis, London, New York, Philadelphia, pp 811–812

    Google Scholar 

  • Hutson RL (1975) Modeling electric fields from implanted electrodes. In: Wizenberg MJ, Robinson JE (eds) Proceedings of International Symposium on Cancer Therapy and Radiation, Washington, DC, April 28–30, 1975. American College of Radiology, Bethesda, MD, pp 229–230

    Google Scholar 

  • James BJ, Strohbehn JW, Mechling JA, Trembly BS (1989) The effect of insertion depth on the theoretical SAR patterns of 915 MHz dipole antenna arrays for hyperthermia. Int J Hyperthermia 5: 733–747

    Article  PubMed  CAS  Google Scholar 

  • Jones KM, Mechling JA, Trembly BS, Strohbehn JW (1988) SAR distributions for 915 MHz interstitial microwave antennas used in hyperthermia for cancer therapy. IEEE Trans Biomed Engng BME 35: 851–857

    Article  CAS  Google Scholar 

  • Jones KM, Mechling JA, Trembly BS, Strohbehn JW (1989) Theoretical and experimental SAR distributions for interstitial dipole antenna arrays used in hyperthermia. IEEE Trans Microwave Theory and Tech MTT 37: 1200–1209

    Article  Google Scholar 

  • Kapp DS, Fessenden P, Samulski TV, Bagshaw MA, Cox RS, Lee ER, Lohrbach AW, Meyer JL, Prionas SD (1988) Stanford University institutional report. Phase 1 evaluation of equipment for hyperthermic treatment of cancer. Int J Hyperthermia 4: 75–115

    Article  PubMed  CAS  Google Scholar 

  • King RWP, Smith GS (1981) Antennas in Matter. MIT Press, Cambridge, MA, pp 489–526

    Google Scholar 

  • King RWP, Trembly BS, Strohbehn JW (1983) Electromagnetic field of an insulated antenna in a conducting or dielectric medium. IEEE Trans Microwave Theory and Tech MTT 31: 574–583

    Article  Google Scholar 

  • Kobayashi H, Amemiya Y (1985) Combined effect of implant heating and whole-body heating. In: Abe M, Takahashi M, Sugahara T (eds) Hyperthermia in Cancer Therapy. Mag Bros Inc, Tokyo, pp 178–179

    Google Scholar 

  • Kobayashi T, Kida Y, Ohta M, Kageyama N, Amamiya Y, Kobayashi H (1985) Experimental study on magnetic induction hyperthermia for brain tumor. In: Abe M, Takahashi M, Sugahara T (eds) Hyperthermia in Cancer Therapy. Mag Bros Inc, Tokyo, pp 158–159

    Google Scholar 

  • Lacourse JR, Miller III WT, Vogt M, Selikowitz SM (1985) Effect of high-frequency current on nerve and muscle tissue. IEEE Trans Biomed Engng BME 32: 82–86

    Article  CAS  Google Scholar 

  • Lagendijk JJW (1987) Heat transfer in tissues. In: Field SB, Franconi C (eds) Physics and Technology of Hyperthermia. Martinus Nijhoff, Dordrecht, Netherlands, pp 517–552

    Google Scholar 

  • Lee DJ, O’Neill MJ, Lam KS, Rostock R, Lam WC (1986) A new design of microwave interstitial applicators for hyperthermia with improved treatment volume. Int J Radiat Oncol Biol Phys 12: 2003–2008

    Article  PubMed  CAS  Google Scholar 

  • Lim J (1988) Evaluation of temperature fields in two dynamic phantoms heated by the ferromagnetic implant hyperthermia. MS Thesis. Dept Aerospace and Mechanical Engineering, University of Arizona, Tucson.

    Google Scholar 

  • Lin JC, Wang YJ (1987) Interstitial microwave antennas for thermal therapy. Int J Hyperthermia 3: 37–47

    Article  PubMed  CAS  Google Scholar 

  • Marchal C, Nadi M, Hoffstetter S, Bey P, Pernot M, Prieur G (1989) Practical interstitial method of heating operating at 27. 12 MHz. Int J Hyperthermia 5: 451–466

    Article  PubMed  CAS  Google Scholar 

  • Marchosky JA, Moran C, Fearnot N (1988) A system for volumetric interstitial hyperthermia. Abtracts 36th Annual Meeting of Radiation Research Society, RRS, Philadelphia, p 32

    Google Scholar 

  • Matsui M, Shimizu T, Kobayashi T (1987) Research on hyperthermia implant materials from a point of view of material science. In: Onoyama Y (ed) Hyperthermic Oncology ‘86 in Japan. Mag Bros Inc, Tokyo, pp 63–64

    Google Scholar 

  • Medal R, Shorey W, Gilchrist RK, Barker W, Hanselman R (1959) Controlled radiofrequency generator for production of localized heat in intact animal. Am Med Assoc Arch Surg 79: 427–431

    Article  Google Scholar 

  • Meredith RF, Brezovich IA, Weppelmann B, Henderson RA, Brawner WR, Kwapien RP, Bartolucci AA, Salter MM (1989) Ferromagnetic thermoseeds: Suitable for an afterloading interstitial implant. Int J Radiat Oncol Biol Phys 17: 1341–1346

    Article  PubMed  CAS  Google Scholar 

  • Merry GA, Hale R, Zervas NT (1973) Induction thermocoagulation — a power seed study. IEEE Trans Biomed Engng BME 20: 302–303

    Article  CAS  Google Scholar 

  • Milligan AJ, Panjehpour M (1983) The relationship of temperature profiles to frequency during interstitial hyperthermia. Med Instrum 17: 303–306

    PubMed  CAS  Google Scholar 

  • Moidal RA, Wolfson SK, Selker RG, Weine SB (1976) Materials for selective heating in a radiofrequency electromagnetic field for the combined chemothermal treatment of brain tumours. J Biomed Mater Res 10: 327–334

    Article  Google Scholar 

  • Prandtl L (1963) Essentials of Fluid Dynamics. Blackie and Sons, Glasgow, pp 98–114

    Google Scholar 

  • Prionas SD, Fessenden P, Kapp DS, Goffinet DR, Hahn GM (1989) Interstitial electrodes allowing longitudinal control of SAR distributions. In: Sugahara T, Saito M (eds) Hyperthermic Oncology 1988, vol 2. Taylor and Francis, London, New York, Philadelphia, pp 707–710

    Google Scholar 

  • Prior MV (1991) A comparative study of RFLCF and hot source interstitial hyperthermia techniques. Int J Hyperthermia 7: 131–140

    Article  PubMed  CAS  Google Scholar 

  • Roos D, Hugander A (1988) Microwave interstitial applicators with improved longitudinal heating patterns. Int J Hyperthermia 4: 609–615

    Article  PubMed  CAS  Google Scholar 

  • Satoh T, Stauffer PR (1988) Implantable helical coil microwave antenna for interstitial hyperthermia. Int J Hyperthermia 4: 497–512

    Article  PubMed  CAS  Google Scholar 

  • Satoh T, Stauffer PR, Fike JR (1988) Thermal distribution studies of helical coil microwave antennas for interstitial hyperthermia. Int J Radiat Oncol Biol Phys 15: 1209–1218

    Article  PubMed  CAS  Google Scholar 

  • Schreier K, Budihna M, Lesnicar H, HandlZeller L, Hand JW, Prior MV, Clegg ST, Brezovich IA (1990) Preliminary studies of interstitial hyperthermia using hot water. Int J Hyperthermia 6: 431–444

    Article  PubMed  CAS  Google Scholar 

  • Schwan HP (1957) Electrical properties of tissues and cell suspensions. Adv Biol Med Phys 5: 147–209

    PubMed  CAS  Google Scholar 

  • Schwan HP (1963) Electric characteristics of tissues — a survey. Biophysik 1: 198–208

    Article  Google Scholar 

  • Sekins KM (1989) Microvascular bioheat transfer equations. In: Sugahara T, Saito, M (eds) Hyperthermic Oncology, vol 2. Taylor and Francis, London, New York, Philadelphia, pp 758–760

    Google Scholar 

  • Shimm D, Cetas T, Buechler D, Chen J, Dean S, Fletcher A, Haider S, Lutz W, Sinno R, Stauffer P, Cassady J (1989) Inductively heated, thermoregulating ferromagnetic seeds for interstitial thermoradiotherapy. In: Sugahara T, Saito M (eds) Hyperthermic Oncology, vol 1. Taylor and Francis, London, New York, Philadelphia, pp 594–595

    Google Scholar 

  • Simpson PG (1960) Induction Heating. McGraw-Hill, New York

    Google Scholar 

  • Smythe WR (1950) Static and Dynamic Electricity. McGraw-Hill, New York

    Google Scholar 

  • Stauffer PR (1990) Techniques for interstitial hyperthermia. In: Field SB, Hand JW (eds) An Introduction to the Practical Aspects of Clinical Hyperthermia. Taylor and Francis, London, New York, Philadelphia, pp 344–370

    Google Scholar 

  • Stauffer PR, Cetas TC, Fletcher AM, DeYoung DW, Dewhirst MW, Oleson JR, Roemer RB (1984a) Observations on the use of ferromagnetic implants for inducing hyperthermia. IEEE Trans Biomed Engng BME 31: 76–90

    Article  CAS  Google Scholar 

  • Stauffer PR, Cetas TC, Jones RC (1984b) Magnetic induction heating of ferromagnetic implants for inducing localized hyperthermia in deep seated tumours. IEEE Trans Biomed Engng BME 31: 235–251

    Article  CAS  Google Scholar 

  • Stauffer PR, Sneed PK, Suen SA, Satoh T, Matsumoto K, Fike JR, Phillips TL (1989) Comparative thermal dosimetry of interstitial microwave and radiofrequency-LCF hyperthermia. Int J Hyperthermia 5: 307–318

    Article  PubMed  CAS  Google Scholar 

  • Stea B, Cetas TC, Cassady JR, Guthkelch AW, Iacono R, Lulu B, Lutz W, Obbens E, Rossman K, Seeger J, Shetter A, Shimm DS (1990) Interstitial thermoradiotherapy of brain tumors: Preliminary results of a phase I clinical trial. Int J Radiat Oncol Biol Phys 19: 1463–1471

    Article  PubMed  CAS  Google Scholar 

  • Sternhagen CJ, Doss JD, Day PW, Edwards WS, Dobernek RC, Herzon FS, Powell TD, O’Brien GF, Larkin JM (1977) Clinical use of radiofrequency current in oral cavity carcinomas and metastatic malignancies with continuous temperature control and monitoring. In: Streffer C, et al (eds) Cancer Therapy by Hyperthermia and Radiation. Urban and Schwarzenberg, Munich, pp 331–334

    Google Scholar 

  • Strohbehn JW (1983) Temperature distributions from interstitial rf electrode hyperthermia systems: Theoretical predictions. Int J Radiat Oncol Biol Phys 9: 1655–1667

    PubMed  CAS  Google Scholar 

  • Strohbehn JW, Mechling JA (1986) Interstitial techniques for clincial hyperthermia. In: Hand JW, James JR (eds) Physical Techniques in Clinical Hyperthermia. Research Studies Press, Letchworth, pp 210–287

    Google Scholar 

  • Strohbehn JW, Trembly BS, Douple EB (1982) Blood flow effects on the temperature distributions from an invasive microwave antenna array used in cancer therapy. IEEE Trans Biomed Engng BME 29: 649–661

    Article  CAS  Google Scholar 

  • Stuchly MA, Stuchly SS (1980) Dielectric properties of biological substances — tabulated. J Microwave Power 15: 19–26

    Google Scholar 

  • Taylor (1978) Electromagnetic syringe. IEEE Trans Biomed Engng BME 25: 303–304

    Article  CAS  Google Scholar 

  • Tinga WR, Nelson SO (1973) Dielectric properties of materials for microwave processing — tabulated. J Microwave Power 8: 23–65

    Google Scholar 

  • Trembly BS (1985) The effects of driving frequency and antenna length on power deposition within a microwave antenna array used for hyperthermia. IEEE Trans Microwave Theory and Tech MTT 32: 152–157

    CAS  Google Scholar 

  • Trembly BS, Wilson AH, Sullivan MJ, Stein AD, Wong TZ, Strohbehn JW (1986) Control of the SAR pattern within an interstitial microwave array through variation of antenna driving phase. IEEE Trans Microwave Theory and Tech MTT 34: 568–571

    Article  Google Scholar 

  • Turner PF (1986a) Interstitial equal-phased arrays for EM hyperthermia. IEEE Trans Microwave Theory and Tech MTT 34: 572–578

    Article  Google Scholar 

  • Turner PF (1986b) Interstitial em applicator/ temperature probes. In: Proceedings of 8th Annual Conference IEEE Engineering in Medicine and Biology Society, vol 3. IEEE, New York, pp 1454–1457

    Google Scholar 

  • Uzonoglu NK, Nikita KS (1988) Estimation of temperature distribution inside tissues heated by interstitial RF electrode systems. IEEE Trans Biomed Engng BME 35: 250–255

    Article  Google Scholar 

  • Visser AG, Deurloo IKK, Levendag PC, Ruifrok ACC, Cornet B, van Rhoon GC (1989) An interstitial hyperthermia system at 27 MHz. Int J Hyperthermia 5: 265–276

    Article  PubMed  CAS  Google Scholar 

  • Weinbaum S, Jiji LM (1985) A new simplified bioheat equation for the effect of blood flow on local average tissue temperature. J Biomech Eng 107: 131–139

    Article  PubMed  CAS  Google Scholar 

  • Wong TZ, Strohbehn JW, Jones KM, Mechling JA, Trembly BS (1986) SAR patterns from an interstitial microwave antennaarray hyperthermia system. IEEE Trans Microwave Theory and Tech MTT 34: 560–567

    Article  Google Scholar 

  • Wu A, Watson ML, Sternick ES, Bielawa RJ, Carr KL (1987) Performance characteristics of a helical coil microwave interstitial antenna for local hyperthermia. Med Phys 14: 235–237

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama M, Wada J, Nagara H, Kasagi Y, Itaoka T (1985) Insertion of electric heater into the tumor tissue. In: Abe M, Takahashi M, Sugahara T (eds) Hyperthermia in Cancer Therapy. Mag Bros Inc, Tokyo, pp 94–95

    Google Scholar 

  • Zhang Y, Dubal NV, Takemoto-Hambleton R, Joines WT (1988) The determination of the electromagnetic field and SAR pattern of an interstitial applicator in a dissipative medium. IEEE Trans Microwave Theory and Tech MTT 36: 1438–1443

    Article  Google Scholar 

  • Zhu XL, Gandhi OP (1988) Design of RF needle applicators for optimum SAR distributions in irregularly shaped tumors. IEEE Trans Biomed Engng BME 35: 382–388

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag/Wien

About this chapter

Cite this chapter

Hand, J.W. (1992). Physical Aspects of Interstitial Hyperthermia. In: Handl-Zeller, L. (eds) Interstitial Hyperthermia. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9155-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9155-2_4

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-9157-6

  • Online ISBN: 978-3-7091-9155-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics