Advertisement

Physical Aspects of Interstitial Hyperthermia

  • J. W. Hand

Abstract

Recent years have seen a developing interest in the use of hyperthermia, usually combined with radiotherapy or chemotherapy, in the treatment of some cancer patients. Experience has shown that induction of hyperthermia in patients in a predictable and sufficiently uniform manner is, in general, a major technical problem. One approach which has been investigated is to implant the sources of heat within the tumour and some surrounding normal tissue in ways analogous to techniques used in brachytherapy. This approach circumvents some of the problems encountered with most non-invasive methods such as limited penetration and excessive heating of intervening normal tissues (Gautherie, 1990). Interstitial methods are aften applicable to deep seated as well as superficial tumours.

Keywords

Radiat Oncol Biol Phys Specific Absorption Rate Insertion Depth Central Conductor Heating Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Astrahan MA, George FW (1980) A temperature regulating circuit for experimental localized current field hyperthermia systems. Med Phys 7: 362–364PubMedCrossRefGoogle Scholar
  2. Astrahan MA, Luxton G, Sapozink MD, Petrovich Z (1988) The accuracy of temperature measurement from within an interstitial microwave antenna. Int J Hyperthermia 4: 593–607PubMedCrossRefGoogle Scholar
  3. Atkinson WJ, Brezovich IA, Chakraborty DP (1984) Usable frequencies in hyperthermia with thermal seeds. IEEE Trans Biomed Engng BME 31: 70–75CrossRefGoogle Scholar
  4. Baba M, Itani K, Naito H, Suzuki A, Minamitani H (1987) An estimation of the ferromagnetic seeds for hyperthermia. In: Onoyama Y (ed) Hyperthermic Oncology 86 in Japan. Mag Bros Inc, Tokyo, pp 135–136Google Scholar
  5. Brezovich IA (1988) Low frequency hyperthermia: Capacitive and ferromagnetic seed methods. In: Paliwal B, Hetzel FW, Dewhirst MW (eds) Biological, Physical and Clinical Aspects of Hyperthermia. American Institute of Physics, New York, pp 82–110Google Scholar
  6. Brezovich IA, Atkinson WJ, Chakraborty DP (1984) Temperature distributions in tumor models heated by self-regulating nickel-copper alloy thermoseeds. Med Phys 11: 145–152PubMedCrossRefGoogle Scholar
  7. Brezovich IA, Lilly MB, Meredith RF, Weppelmann B, Henderson RA, Brawner Jr W, Salter MM (1990) Hyperthermia of pet animal tumours with self-regulating ferromagnetic thermoseeds. Int J Hyperthermia 6: 117–130PubMedCrossRefGoogle Scholar
  8. Brezovich IA, Meredith RF, Henderson RA, Brawne WR, Weppelmann B, Salter MM (1989) Hyperthermia with water-perfused catheters. In: Sugahara T, Saito M (eds) Hyperthermic Oncology 1988, vol 1. Taylor and Francis, London, New York, Philadelphia, pp 809–810Google Scholar
  9. Burton C, Hill M, Walker AE (1971) The RF thermoseed — a thermally self regulating implant for the production of brain lesions. IEEE Trans Biomed Engng BME 18: 104–109CrossRefGoogle Scholar
  10. Chan KW, Chou CK, McDougall JA, Luk KH, Vora NL, Forell BW (1989) Changes in heating patterns of interstitial microwave antenna arrays at different insertion depths. Int J Hyperthermia 5: 499–507PubMedCrossRefGoogle Scholar
  11. Chen JS, Poirier DR, Damento MA, Demer LJ, Biencaniello F, Cetas TC (1988) Development of Ni-4 wt. To Si thermoseeds for hyperthermia cancer treatment. J Biomaterials Res 22: 303–319CrossRefGoogle Scholar
  12. Chen MM, Holmes KR (1980) Micro-vascular contributions in tissue heat transfer. Ann NY Acad Sci 335: 137–151PubMedCrossRefGoogle Scholar
  13. Cosset JM, Dutreix J, Haie C, Gerbaulet A, Janoray P, Dewar JA (1985) Interstitial thermoradiotherapy: A technical and clinical study of 29 implantations performed at the Institut Gustave-Roussy. Int J Hyperthermia 1: 3–13PubMedCrossRefGoogle Scholar
  14. Crezee J, Lagendijk JJW (1990) Experimental verification of bioheat transfer theories: Measurement of temperature profiles around large artifical vessels in perfused tissue. Phys Med Biol 35: 905–923PubMedCrossRefGoogle Scholar
  15. Demer LJ, Chen JS, Buechler D, Damento MA, Poirier DS, Cetas TC (1986) Ferromagnetic thermoseed materials for tumor hyperthermia. Proc. IEEE 8th Annual Conference of the Engineering in Medicine and Biology Society (vol 3 ). IEEE, New York, pp 1448–1453Google Scholar
  16. Denman DL, Foster AE, Cooper Lewis G, Redmond KP, Elson HR, Breneman JC, Kereiakes JG, Aron BS (1988) The distribution of power and heat produced by interstitial microwave antenna arrays: II. The role of antenna spacing and insertion depth. Int J Radiat Oncol Biol Phys 14: 537–545PubMedCrossRefGoogle Scholar
  17. Deshmukh R, Damento M, Demer L, Forsyth K, DeYoung D, Dewhirst M, Cetas TC (1984) Ferromagnetic alloys with curie temperatures near 50°C for use in hyper-thermic therapy. In: Overgaard J (ed) Hyperthermic Oncology 1984, vol 1. Taylor and Francis, London, New York, Philadelphia, pp 571–574Google Scholar
  18. de Sieyes DC, Douple EB, Strohbehn JW, Trembly BS (1981) Some aspects of optimization of an invasive microwave antenna for local hyperthermia treatment of cancer. Med Phys 8: 174–183PubMedCrossRefGoogle Scholar
  19. Dewey WC (1989) Dr. Eugene Robinson (1925–1983). Int J Radiat Oncol Biol Phys 16: 531–532CrossRefGoogle Scholar
  20. Doss JD (1975) Use of RF fields to produce hyperthermia in animal tumors. In: Wizenberg M.I, Robinson JE (eds) Proceedings of International Symposium on Cancer Therapy and Radiation, Washington, DC, April 28–30, 1975. American College of Radiology, Bethesda, MD, pp 226–227Google Scholar
  21. Doss JD, McCabe CW (1976) A technique for localized heating in tissue: An adjunct to tumor therapy. Med Instrum 10: 16–21PubMedGoogle Scholar
  22. Durney CH (1987) Electromagnetic field generation and propagation. In: Field SB, Franconi C (eds) Physics and Technology of Hyperthermia. Martinus Nijhoff, Dordrecht, The Netherlands, pp 123–151Google Scholar
  23. Furse CM, Iskander MF (1989) Three-dimensional electromagnetic power deposition in tumors using interstitial antenna arrays. IEEE Trans Biomed Engng BME 36: 977–986CrossRefGoogle Scholar
  24. Gautherie M (ed) (1990) Methods of External Hyperthermic Heating. Springer, Berlin, Heidelberg, New York, TokyoGoogle Scholar
  25. Geddes LA, Baker LE (1967) The specific resistance of biological material — a compendium of data for the biomedical engineer and physiologist. Med and Biol Engng 5: 271–293CrossRefGoogle Scholar
  26. Gerner EW, Connor WG, Boone MLM, Doss JD, Mayer EG, Miller RC (1975) The potential of localized heating as an adjunct to radiation therapy. Radiology 116: 433–439PubMedGoogle Scholar
  27. Haider SA, Chen ZP, Cetas TC, Roemer RB (1987) Interstitial ferrmomagnetic implant heating: Practical guidelines for use. Proceedings of 9th Annual Conference of IEEE Engineering in Medicine and Biology Society (vol 3 ). IEEE, New York, pp 1626–1628Google Scholar
  28. Hand JW, Trembly BS, Prior MV (1991) Physics of interstitial hyperthermia: Radio-frequency and hot water tube techniques. In: Urano M, Douple E (eds) Hyperthermia and Oncology, vol 3: Interstitial Hyperthermia. VSP, ZeistGoogle Scholar
  29. Handl O, Handl-Zeller L, Schreier K, Lesnicar H, Budihna M (1989) Interstitial hyperthermia with microheat exchangers — system KHS-9/W18. In: Sugahara T, Saito M (eds) Hyperthermic Oncology 1988, vol 1. Taylor and Francis, London, New York, Philadelphia, pp 811–812Google Scholar
  30. Hutson RL (1975) Modeling electric fields from implanted electrodes. In: Wizenberg MJ, Robinson JE (eds) Proceedings of International Symposium on Cancer Therapy and Radiation, Washington, DC, April 28–30, 1975. American College of Radiology, Bethesda, MD, pp 229–230Google Scholar
  31. James BJ, Strohbehn JW, Mechling JA, Trembly BS (1989) The effect of insertion depth on the theoretical SAR patterns of 915 MHz dipole antenna arrays for hyperthermia. Int J Hyperthermia 5: 733–747PubMedCrossRefGoogle Scholar
  32. Jones KM, Mechling JA, Trembly BS, Strohbehn JW (1988) SAR distributions for 915 MHz interstitial microwave antennas used in hyperthermia for cancer therapy. IEEE Trans Biomed Engng BME 35: 851–857CrossRefGoogle Scholar
  33. Jones KM, Mechling JA, Trembly BS, Strohbehn JW (1989) Theoretical and experimental SAR distributions for interstitial dipole antenna arrays used in hyperthermia. IEEE Trans Microwave Theory and Tech MTT 37: 1200–1209CrossRefGoogle Scholar
  34. Kapp DS, Fessenden P, Samulski TV, Bagshaw MA, Cox RS, Lee ER, Lohrbach AW, Meyer JL, Prionas SD (1988) Stanford University institutional report. Phase 1 evaluation of equipment for hyperthermic treatment of cancer. Int J Hyperthermia 4: 75–115PubMedCrossRefGoogle Scholar
  35. King RWP, Smith GS (1981) Antennas in Matter. MIT Press, Cambridge, MA, pp 489–526Google Scholar
  36. King RWP, Trembly BS, Strohbehn JW (1983) Electromagnetic field of an insulated antenna in a conducting or dielectric medium. IEEE Trans Microwave Theory and Tech MTT 31: 574–583CrossRefGoogle Scholar
  37. Kobayashi H, Amemiya Y (1985) Combined effect of implant heating and whole-body heating. In: Abe M, Takahashi M, Sugahara T (eds) Hyperthermia in Cancer Therapy. Mag Bros Inc, Tokyo, pp 178–179Google Scholar
  38. Kobayashi T, Kida Y, Ohta M, Kageyama N, Amamiya Y, Kobayashi H (1985) Experimental study on magnetic induction hyperthermia for brain tumor. In: Abe M, Takahashi M, Sugahara T (eds) Hyperthermia in Cancer Therapy. Mag Bros Inc, Tokyo, pp 158–159Google Scholar
  39. Lacourse JR, Miller III WT, Vogt M, Selikowitz SM (1985) Effect of high-frequency current on nerve and muscle tissue. IEEE Trans Biomed Engng BME 32: 82–86CrossRefGoogle Scholar
  40. Lagendijk JJW (1987) Heat transfer in tissues. In: Field SB, Franconi C (eds) Physics and Technology of Hyperthermia. Martinus Nijhoff, Dordrecht, Netherlands, pp 517–552Google Scholar
  41. Lee DJ, O’Neill MJ, Lam KS, Rostock R, Lam WC (1986) A new design of microwave interstitial applicators for hyperthermia with improved treatment volume. Int J Radiat Oncol Biol Phys 12: 2003–2008PubMedCrossRefGoogle Scholar
  42. Lim J (1988) Evaluation of temperature fields in two dynamic phantoms heated by the ferromagnetic implant hyperthermia. MS Thesis. Dept Aerospace and Mechanical Engineering, University of Arizona, Tucson.Google Scholar
  43. Lin JC, Wang YJ (1987) Interstitial microwave antennas for thermal therapy. Int J Hyperthermia 3: 37–47PubMedCrossRefGoogle Scholar
  44. Marchal C, Nadi M, Hoffstetter S, Bey P, Pernot M, Prieur G (1989) Practical interstitial method of heating operating at 27. 12 MHz. Int J Hyperthermia 5: 451–466PubMedCrossRefGoogle Scholar
  45. Marchosky JA, Moran C, Fearnot N (1988) A system for volumetric interstitial hyperthermia. Abtracts 36th Annual Meeting of Radiation Research Society, RRS, Philadelphia, p 32Google Scholar
  46. Matsui M, Shimizu T, Kobayashi T (1987) Research on hyperthermia implant materials from a point of view of material science. In: Onoyama Y (ed) Hyperthermic Oncology ‘86 in Japan. Mag Bros Inc, Tokyo, pp 63–64Google Scholar
  47. Medal R, Shorey W, Gilchrist RK, Barker W, Hanselman R (1959) Controlled radiofrequency generator for production of localized heat in intact animal. Am Med Assoc Arch Surg 79: 427–431CrossRefGoogle Scholar
  48. Meredith RF, Brezovich IA, Weppelmann B, Henderson RA, Brawner WR, Kwapien RP, Bartolucci AA, Salter MM (1989) Ferromagnetic thermoseeds: Suitable for an afterloading interstitial implant. Int J Radiat Oncol Biol Phys 17: 1341–1346PubMedCrossRefGoogle Scholar
  49. Merry GA, Hale R, Zervas NT (1973) Induction thermocoagulation — a power seed study. IEEE Trans Biomed Engng BME 20: 302–303CrossRefGoogle Scholar
  50. Milligan AJ, Panjehpour M (1983) The relationship of temperature profiles to frequency during interstitial hyperthermia. Med Instrum 17: 303–306PubMedGoogle Scholar
  51. Moidal RA, Wolfson SK, Selker RG, Weine SB (1976) Materials for selective heating in a radiofrequency electromagnetic field for the combined chemothermal treatment of brain tumours. J Biomed Mater Res 10: 327–334CrossRefGoogle Scholar
  52. Prandtl L (1963) Essentials of Fluid Dynamics. Blackie and Sons, Glasgow, pp 98–114Google Scholar
  53. Prionas SD, Fessenden P, Kapp DS, Goffinet DR, Hahn GM (1989) Interstitial electrodes allowing longitudinal control of SAR distributions. In: Sugahara T, Saito M (eds) Hyperthermic Oncology 1988, vol 2. Taylor and Francis, London, New York, Philadelphia, pp 707–710Google Scholar
  54. Prior MV (1991) A comparative study of RFLCF and hot source interstitial hyperthermia techniques. Int J Hyperthermia 7: 131–140PubMedCrossRefGoogle Scholar
  55. Roos D, Hugander A (1988) Microwave interstitial applicators with improved longitudinal heating patterns. Int J Hyperthermia 4: 609–615PubMedCrossRefGoogle Scholar
  56. Satoh T, Stauffer PR (1988) Implantable helical coil microwave antenna for interstitial hyperthermia. Int J Hyperthermia 4: 497–512PubMedCrossRefGoogle Scholar
  57. Satoh T, Stauffer PR, Fike JR (1988) Thermal distribution studies of helical coil microwave antennas for interstitial hyperthermia. Int J Radiat Oncol Biol Phys 15: 1209–1218PubMedCrossRefGoogle Scholar
  58. Schreier K, Budihna M, Lesnicar H, HandlZeller L, Hand JW, Prior MV, Clegg ST, Brezovich IA (1990) Preliminary studies of interstitial hyperthermia using hot water. Int J Hyperthermia 6: 431–444PubMedCrossRefGoogle Scholar
  59. Schwan HP (1957) Electrical properties of tissues and cell suspensions. Adv Biol Med Phys 5: 147–209PubMedGoogle Scholar
  60. Schwan HP (1963) Electric characteristics of tissues — a survey. Biophysik 1: 198–208CrossRefGoogle Scholar
  61. Sekins KM (1989) Microvascular bioheat transfer equations. In: Sugahara T, Saito, M (eds) Hyperthermic Oncology, vol 2. Taylor and Francis, London, New York, Philadelphia, pp 758–760Google Scholar
  62. Shimm D, Cetas T, Buechler D, Chen J, Dean S, Fletcher A, Haider S, Lutz W, Sinno R, Stauffer P, Cassady J (1989) Inductively heated, thermoregulating ferromagnetic seeds for interstitial thermoradiotherapy. In: Sugahara T, Saito M (eds) Hyperthermic Oncology, vol 1. Taylor and Francis, London, New York, Philadelphia, pp 594–595Google Scholar
  63. Simpson PG (1960) Induction Heating. McGraw-Hill, New YorkGoogle Scholar
  64. Smythe WR (1950) Static and Dynamic Electricity. McGraw-Hill, New YorkGoogle Scholar
  65. Stauffer PR (1990) Techniques for interstitial hyperthermia. In: Field SB, Hand JW (eds) An Introduction to the Practical Aspects of Clinical Hyperthermia. Taylor and Francis, London, New York, Philadelphia, pp 344–370Google Scholar
  66. Stauffer PR, Cetas TC, Fletcher AM, DeYoung DW, Dewhirst MW, Oleson JR, Roemer RB (1984a) Observations on the use of ferromagnetic implants for inducing hyperthermia. IEEE Trans Biomed Engng BME 31: 76–90CrossRefGoogle Scholar
  67. Stauffer PR, Cetas TC, Jones RC (1984b) Magnetic induction heating of ferromagnetic implants for inducing localized hyperthermia in deep seated tumours. IEEE Trans Biomed Engng BME 31: 235–251CrossRefGoogle Scholar
  68. Stauffer PR, Sneed PK, Suen SA, Satoh T, Matsumoto K, Fike JR, Phillips TL (1989) Comparative thermal dosimetry of interstitial microwave and radiofrequency-LCF hyperthermia. Int J Hyperthermia 5: 307–318PubMedCrossRefGoogle Scholar
  69. Stea B, Cetas TC, Cassady JR, Guthkelch AW, Iacono R, Lulu B, Lutz W, Obbens E, Rossman K, Seeger J, Shetter A, Shimm DS (1990) Interstitial thermoradiotherapy of brain tumors: Preliminary results of a phase I clinical trial. Int J Radiat Oncol Biol Phys 19: 1463–1471PubMedCrossRefGoogle Scholar
  70. Sternhagen CJ, Doss JD, Day PW, Edwards WS, Dobernek RC, Herzon FS, Powell TD, O’Brien GF, Larkin JM (1977) Clinical use of radiofrequency current in oral cavity carcinomas and metastatic malignancies with continuous temperature control and monitoring. In: Streffer C, et al (eds) Cancer Therapy by Hyperthermia and Radiation. Urban and Schwarzenberg, Munich, pp 331–334Google Scholar
  71. Strohbehn JW (1983) Temperature distributions from interstitial rf electrode hyperthermia systems: Theoretical predictions. Int J Radiat Oncol Biol Phys 9: 1655–1667PubMedGoogle Scholar
  72. Strohbehn JW, Mechling JA (1986) Interstitial techniques for clincial hyperthermia. In: Hand JW, James JR (eds) Physical Techniques in Clinical Hyperthermia. Research Studies Press, Letchworth, pp 210–287Google Scholar
  73. Strohbehn JW, Trembly BS, Douple EB (1982) Blood flow effects on the temperature distributions from an invasive microwave antenna array used in cancer therapy. IEEE Trans Biomed Engng BME 29: 649–661CrossRefGoogle Scholar
  74. Stuchly MA, Stuchly SS (1980) Dielectric properties of biological substances — tabulated. J Microwave Power 15: 19–26Google Scholar
  75. Taylor (1978) Electromagnetic syringe. IEEE Trans Biomed Engng BME 25: 303–304CrossRefGoogle Scholar
  76. Tinga WR, Nelson SO (1973) Dielectric properties of materials for microwave processing — tabulated. J Microwave Power 8: 23–65Google Scholar
  77. Trembly BS (1985) The effects of driving frequency and antenna length on power deposition within a microwave antenna array used for hyperthermia. IEEE Trans Microwave Theory and Tech MTT 32: 152–157Google Scholar
  78. Trembly BS, Wilson AH, Sullivan MJ, Stein AD, Wong TZ, Strohbehn JW (1986) Control of the SAR pattern within an interstitial microwave array through variation of antenna driving phase. IEEE Trans Microwave Theory and Tech MTT 34: 568–571CrossRefGoogle Scholar
  79. Turner PF (1986a) Interstitial equal-phased arrays for EM hyperthermia. IEEE Trans Microwave Theory and Tech MTT 34: 572–578CrossRefGoogle Scholar
  80. Turner PF (1986b) Interstitial em applicator/ temperature probes. In: Proceedings of 8th Annual Conference IEEE Engineering in Medicine and Biology Society, vol 3. IEEE, New York, pp 1454–1457Google Scholar
  81. Uzonoglu NK, Nikita KS (1988) Estimation of temperature distribution inside tissues heated by interstitial RF electrode systems. IEEE Trans Biomed Engng BME 35: 250–255CrossRefGoogle Scholar
  82. Visser AG, Deurloo IKK, Levendag PC, Ruifrok ACC, Cornet B, van Rhoon GC (1989) An interstitial hyperthermia system at 27 MHz. Int J Hyperthermia 5: 265–276PubMedCrossRefGoogle Scholar
  83. Weinbaum S, Jiji LM (1985) A new simplified bioheat equation for the effect of blood flow on local average tissue temperature. J Biomech Eng 107: 131–139PubMedCrossRefGoogle Scholar
  84. Wong TZ, Strohbehn JW, Jones KM, Mechling JA, Trembly BS (1986) SAR patterns from an interstitial microwave antennaarray hyperthermia system. IEEE Trans Microwave Theory and Tech MTT 34: 560–567CrossRefGoogle Scholar
  85. Wu A, Watson ML, Sternick ES, Bielawa RJ, Carr KL (1987) Performance characteristics of a helical coil microwave interstitial antenna for local hyperthermia. Med Phys 14: 235–237PubMedCrossRefGoogle Scholar
  86. Yokoyama M, Wada J, Nagara H, Kasagi Y, Itaoka T (1985) Insertion of electric heater into the tumor tissue. In: Abe M, Takahashi M, Sugahara T (eds) Hyperthermia in Cancer Therapy. Mag Bros Inc, Tokyo, pp 94–95Google Scholar
  87. Zhang Y, Dubal NV, Takemoto-Hambleton R, Joines WT (1988) The determination of the electromagnetic field and SAR pattern of an interstitial applicator in a dissipative medium. IEEE Trans Microwave Theory and Tech MTT 36: 1438–1443CrossRefGoogle Scholar
  88. Zhu XL, Gandhi OP (1988) Design of RF needle applicators for optimum SAR distributions in irregularly shaped tumors. IEEE Trans Biomed Engng BME 35: 382–388CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1992

Authors and Affiliations

  • J. W. Hand
    • 1
  1. 1.Medical Research Council Cyclotron UnitHammersmith HospitalLondonEngland

Personalised recommendations