Advertisement

Mitochondrial energy crisis as a mechanism for nigral cell death

  • Y. Mizuno
Conference paper
Part of the Key Topics in Brain Research book series (KEYTOPICS)

Summary

Studies on mitochondrial respiratory enzymes in Parkinson’s disease are reviewed. The presence of abnormalities in Complex I of the mitochondrial respiratory chain was described in Parkinson’s disease by several groups of investigators utilizing different methods. These abnormalities do not seem to be a primary defect of Parkinson’s disease. Instead, they seem to be a consequence of long-standing noxious stimuli to substantia nigra. Dopaminergic neurons in substantia nigra appear to have a unique property with reduced tolerance to various noxious stimuli. Further studies on mitochondria seem to be important for the elucidation of Parkinson’s disease.

Keywords

Electron Transport System Mitochondrial Myopathy Mitochondrial Encephalomyopathy Mitochondrial Respiratory Enzyme Nigral Cell Death 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson S, Bankier AT, Barrell BG, de Bruijin MHL, Coulson AR, Crouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290: 457–465Google Scholar
  2. Bindoff LA, Birch-Machin M, Cartlidge NEF, Parker WD Jr, Turnbull DM (1989) Mitochondrial function in Parkinson’s disease. Lancet ii: 49Google Scholar
  3. Chiba K, Trevor AJ, Castagnoli N Jr (1984a) Metabolism of the neurotoxic tertiary amine, MPTP, by brain monoamine oxidase. Biochem Biophys Res Commun 120: 574–578PubMedCrossRefGoogle Scholar
  4. Chiba K, Trevor AJ, Castagnoli N Jr (1984b) Active uptake of MPP+, a metabolite of MPTP, by brain synaptosomes. Biochem Biophys Res Commun 128: 1229–1232Google Scholar
  5. Davis GC, Williams AC, Markey SP, Ebert MH, Caine ED, Reichert CM, Kopin IJ (1979) Chronic Parkinsonism secondary to intravenous injection of meperidine analogues. Psychiatry Res 1: 249–254PubMedCrossRefGoogle Scholar
  6. Halliwell B (1989) Oxidants and the central nervous system: some fundamental questions. Acta Neurol Scand 126: 23–33CrossRefGoogle Scholar
  7. Heikkila RE, Manzino L, Cabbat FS, Duvoisin RC (1984) Protection against the dopaminergic neurotoxicity of l-methyl-4-phenyl-l,2,5,6-tetrahydropyridine by monoamine oxidase inhibitors. Nature 311: 467–469PubMedCrossRefGoogle Scholar
  8. Heikkila RE, Nicklas WJ, Vyas I, Duvoisin RC (1985) Dopaminergic toxicity of rotenone and the l-methyl-4-phenylpyridinium ion after their stereotaxic administration to rats: implication for the mechanism of l-methyl-4-phenyl-l,2,3,6- tetrahydropyridine toxicity. Neurosci Lett 62: 389–394PubMedCrossRefGoogle Scholar
  9. Holt IJ, Harding AE, Morgan-Hughes JA (1988) Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature 331: 717–719PubMedCrossRefGoogle Scholar
  10. Ikebe S, Tanaka M, Ohno K, Sato W, Yamamoto T, Hattori K, Ozawa T, Kondo T, Sato T, Mizuno Y (1990) Increased deleted mitochondrial DNA in the striatum in Parkinson’s disease and senescence. Biochem Biophys Res Commun 170: 1044–1048PubMedCrossRefGoogle Scholar
  11. Irwin I, Langston JW (1985) Selective accumulation of MPP+ in the substantia nigra: a key to neurotoxicity? Life Sci 36: 207–212PubMedCrossRefGoogle Scholar
  12. Javitch JA, Snyder SH (1984) Uptake of MPP+ by dopaminergic neurons explains selectivity of parkinsonism inducing neurotoxin MPTP. Eur J Pharmacol 106: 455–456PubMedCrossRefGoogle Scholar
  13. Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219: 979–980PubMedCrossRefGoogle Scholar
  14. Linnane AW, Marzuki S, Ozawa T, Tanaka M (1989) Mitochondrial DNA mutations as an important contributor to ageing and degenerative disease. Lancet i: 642–645Google Scholar
  15. Lyden A, Bondesson V, Larsson BS (1983) Melanin affinity of l-methyl-4-phenyl- 1,2,3,6-tetrahydropyridine, an inducer of chronic Parkinsonism in humans. Acta Pharmacol Scand 13: 429–432Google Scholar
  16. Mizuno Y, Sone N, Saitoh T (1986) Dopaminergic neurotoxins, MPTP and MPP+, inhibit mitochondrial NADH-ubiquinone oxidoreductase activity. Proc Jap Acad (Ser B) 62: 261–263Google Scholar
  17. Mizuno Y, Sone N, Saitoh T (1987a) Inhibition of mitochondrial NADH-ubiquinone oxidoreductase activity by l-methyl-4-phenylpyridinium ion. Biochem Biophys Res Commun 143: 294–299PubMedCrossRefGoogle Scholar
  18. Mizuno Y, Sone N, Saitoh T (1987b) Effects of 1-methyl-4-phenyl-1,2,3,6-tetrahy- dropyridine and l-methyl-4-phenylpyridinium ion on activities of the enzymes in the electron transport system in mouse brain. J Neurochem 48: 1787–1793PubMedCrossRefGoogle Scholar
  19. Mizuno Y, Sone N, Saitoh T (1987c) Inhibition of mitochondrial alpha-ketoglutarate dehydrogenase by l-methyl-4-phenylpyridinium ion. Biochem Biophys Res Commun 143: 971–976PubMedCrossRefGoogle Scholar
  20. Mizuno Y, Sone N, Suzuki K, Saitoh T (1988) Studies on the toxicity of l-methyl-4- phenylpyridinium ion (MPP+) against mitochondria of mouse brain. J Neurol Sci 86: 97–110PubMedCrossRefGoogle Scholar
  21. Mizuno Y, Ohta S, Tanaka M, Takamiya S, Suzuki K, Sato T, Oya H, Ozawa T, Kagawa Y (1989) Deficiencies in Complex I subunits of the respiratory chain in Parkinson’s disease. Biochem Biophys Res Commun 163: 1450–1455PubMedCrossRefGoogle Scholar
  22. Mizuno Y, Suzuki K, Ohta S (1990) Postmortem changes in mitochondrial respiratory enzymes in brain and a preliminary observation in Parkinson’s disease. J Neurol Sci 96: 49–57PubMedCrossRefGoogle Scholar
  23. Moraes CT, DiMauro S, Zeviani M, Lombes A, Shanske S, Miranda AF, Nakase H, Bonilla E, Werneck LC, Servidei S, Nonaka I, Koga Y, Spiro AJ, Brownell KW, Schmidt B, Schotland DL, Zupanc M, De Vivo DC, Schon EA, Rowland LP (1989) Mitochondrial DNA deletions in progressive external ophthalmoplegia and Kearns- Sayre syndrome. N Engl J Med 320: 1293–1299PubMedCrossRefGoogle Scholar
  24. Nicklas WJ, Vyas I, Heikkila RE (1985) Inhibition of NADH-linked oxidation in brain mitochondria by l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine. Life Sci 36: 2503–2508PubMedCrossRefGoogle Scholar
  25. Ozawa T, Yoneda M, Tanaka M, Ohno K, Sato W, Suzuki H, Nishikimi M, Yamamoto M, Nonaka K, Horai S (1988) Maternal inheritance of deleted DNA in a family with mitochondrial myopathy. Biochem Biophys Res Commun 154: 1240–1247PubMedCrossRefGoogle Scholar
  26. Ozawa T, Tanaka M, Ikebe S, Ohno K, Kondo T, Mizuno Y (1990) Quantitative determination of deleted mitochondrial DNA relative to normal DNA in parkinsonian striatum by a kinetic PCR analysis. Biochem Biophys Res Commun 172: 483–489PubMedCrossRefGoogle Scholar
  27. Parker WD Jr, Boyson SJ, Parks JK (1990) Abnormalities of the electron transport chain in idiopathic Parkinson’s disease. Ann Neurol 26: 719–723CrossRefGoogle Scholar
  28. Ramsay RR, Salach JI, Singer TP (1986) Uptake of neurotoxin l-methyl-4-phenylpy- ridine (MPP+) by mitochondria and its relation to the inhibition of the mitochondrial oxidation of NAD-linked substrates by MPP+. Biochem Biophys Res Commun 134: 743–748PubMedCrossRefGoogle Scholar
  29. Ramsay RR, Singer TP (1986) Energy-dependent uptake of N-methyl-4-phenyl- pyridinium, the neurotoxic metabolite of l-methyI-4-phenyl-l,2,3,6-tetrahy- dropyridine, by mitochondria. J Biol Chem 261: 7585–7587PubMedGoogle Scholar
  30. Richter C, Park JW, Ames BN (1988) Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci USA 85: 6465–6467PubMedCrossRefGoogle Scholar
  31. Schapira AHV, Cooper JM, Dexter D, Jenner P, Clark JB, Marsden CD (1989) Mitochondrial complex I deficiency in Parkinson’s disease. Lancet i: 1269Google Scholar
  32. Schapira AHV, Cooper JM, Dexter D, Clark JB, Jenner P, Marsden CD (1990) Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem 54: 823–827PubMedCrossRefGoogle Scholar
  33. Schofner JM, Lott MT, Lezza AMS, Scibel P, Ballinger SW, Wallace DC (1990) Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNALys mutation. Cell 61: 931–937CrossRefGoogle Scholar
  34. Seyama K, Suzuki K, Mizuno Y, Yoshida M, Tanaka M, Ozawa T (1989) Mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes with special reference to the mechanism of cerebral manifestations. Acta Neurol Scand 80: 561–568PubMedCrossRefGoogle Scholar
  35. Tanaka M, Sato W, Ohno L, Yamamoto T, Ozawa T (1989) Direct sequencing of deleted mitochondrial DNA in myopathic patients. Biochem Biophys Res Commun 164: 156–163PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1991

Authors and Affiliations

  • Y. Mizuno
    • 1
  1. 1.Department of NeurologyJuntendo University School of MedicineBunkyo, Tokyo 113Japan

Personalised recommendations