Advertisement

Genes of human catecholamine-synthesizing enzymes

  • T. Nagatsu
  • N. Kaneda
  • K. Kobayashi
  • H. Ichinose
  • T. Sasaoka
  • A. Ishii
  • C. Sumi
  • K. Kiuchi
  • K. Fujita
  • Y. Kurosawa
Conference paper
Part of the Key Topics in Brain Research book series (KEYTOPICS)

Summary

We cloned full-length cDNAs and genomic DNAs of human catocholamine-synthesizing enzymes, i.e., tyrosine hydroxylase (TH), aromatic L-amino acid decarboxylase (AADC), dopamine β-hydroxylase (DBH), and phenythanolamine N-methyltransferase (PNMT), and determined the nucleotide sequences and the deduced amino acid sequences. Multiple mRNAs of human TH, human DBH, and human PNMT were discovered by cDNA cloning. Four types of human TH mRNAs are produced by althernative splicing mechanisms from a single gene. The multiple forms of human TH may give additional regulation to the human enzyme. We have succeeded in expressing human TH gene in transgnic mice. The 5′-flanking regions of the genes of human TH, DBH and PNMT contain possible transcription regulatory elements such as cyclic AMP responsive element (CRE) (TH, DBH, PNMT), glucocordicoid responsive element (GRE) (DBH, PNMT), and Sp1 (TH, PNMT) binding site.

Keywords

Tyrosine Hydroxylase Adrenal Medulla Hairpin Loop Human Pheochromocytoma PNMT Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Axelrod J (1962) Purification and properties of phenylethanolamine N-methyltransferase. J Biol Chem 237: 1657–1660PubMedGoogle Scholar
  2. Baetge EE, Behringer RR, Messsing A, Brinster RL, Palmiter RD (1988) Transgenic mice express the human phenylethanolamine N-methyltransferase gene in adrenal medulla and retina. Proc Natl Acad Sci USA 85: 3648–3652PubMedCrossRefGoogle Scholar
  3. Brenneman AR, Kaufman S (1964) The role of tetrahydropteridines in the enzymatic conversion of tyrosine to 3,4-dihydroxyphenylalanine. Biochem Biophys Res Commun 17: 177–183CrossRefGoogle Scholar
  4. Coker GT III, Vinnedge L, O’Malley KL (1988) Characterization of rat and human tyrosine hydroxylase genes: functional expression of both promoters in neuronal and non-neuronal cell types. Biochem Biophys Res Commun 157: 1341–1347PubMedCrossRefGoogle Scholar
  5. Dahlstrom A, Belmaker RH, Sandler M (eds) (1988) In: Progress in catecholamine research, part A. Basic aspects and peripheral mechanisms. Alan R Liss, New York, pp 1–613Google Scholar
  6. Friedman S, Kaufman S (1965) 3,4-Dihydroxyphenylethylamine β-hydroxylase. Physical properties, copper content, and role of copper in the catalytic activity. J Biol Chem 240: 4763–4773Google Scholar
  7. Fujisawa H, Okuno S (1987) Tyrosine 3-monooxygenase from rat adrenals. In: Kaufman S (ed) Methods in enzymology, vol 142. Academic Press, New York, pp 63–71Google Scholar
  8. Ginns EI, Rehari M, Martin BM, Weller M, O’Malley KL, La Marca ME, McAllister CG, Paul SM (1988) Expression of human tyrosine hydroxylase cDNA in invertebrate cells using a baculovirus vector. J Biol Chem 263: 7406–7410PubMedGoogle Scholar
  9. Grima B, Lamouroux A, Blanot F, Faucon Biguet N, Mallet J (1985) Complete mRNA coding sequence of rat tyrosine hydroxylase. Proc Natl Acad Sci USA 82: 617–621PubMedCrossRefGoogle Scholar
  10. Grima B, Lamouroux A, Boni C, Julien JF, Javoy-Agid F, Mallet J (1987) A single human gene encoding multiple tyrosine hydroxylases with different predicted functional characteristics. Nature 326: 707–711PubMedCrossRefGoogle Scholar
  11. Horellou P, Le Bourdelles B, Clot-Humbert J, Guibert B, Leviel V, Mallet J (1988) Multiple human tyrosine hydroxylase enzymes, generated through alternative splicing, have different specific activities in Xenopus oocytes. J Neurochem 51: 652–655PubMedCrossRefGoogle Scholar
  12. Ichikawa S, Ichinose H, Nagatsu T (1990) Multiple mRNAs of monkey tyrosine hydroxylase. Biochem Biophys Res Commun 173: 1331–1336PubMedCrossRefGoogle Scholar
  13. Ichinose H, Kurosawa Y, Titani K, Fujita K, Nagatsu T (1989) Isolation and characterization of a cDNA clone encoding human aromatic L-amino acid decarboxylase. Biochem Biophys Res Commun 164: 1024–1030PubMedCrossRefGoogle Scholar
  14. Ishii A, Hagihara M, Matsuura S, Uchida K, Kiuchi K, Kaneda N, Toya S, Kohsaka S, Nagatsu T (1990) Effect of (6R)- and (6S)-tetrahydrobiopterin on L-3,4-dihydroxy- phenylalanine (DOPA) formation in NRK fibroblasts transfected with human tyrosine hydroxylase type 2 cDNA. Neurochem Int 17: 625–632PubMedCrossRefGoogle Scholar
  15. Kaneda N, Kobayashi K, Ichinose H, Kishi F, Nakazawa A, Kurosawa Y, Fujita K, Nagatsu T (1987) Isolation of a novel cDNA clone for human tyrosine hydroxylase: alternative RNA splicing produces four kinds of mRNA from a single gene. Biochem Biophys Res Commun 146: 971–975PubMedCrossRefGoogle Scholar
  16. Kaneda N, Ichinose H, Kobayashi K, Oka K, Kishi F, Nakazawa A, Kurosawa Y, Fujita K, Nagatsu T (1988) Molecular cloning of cDNA and chromosomal assignment of the gene for human phenylethanolamine N-methyltransferase, the enzyme for epinephrine biosynthesis. J Biol Chem 263: 7672–7677PubMedGoogle Scholar
  17. Kaneda N, Sasaoka T, Kobayashi K, Katsuki M, Yokoyama M, Nagatsu I, Kurosawa Y, Fujita K, Nagatsu T (1990) Production and analysis of transgenic mice carrying human tyrosine hydroxylase gene (in Japanese). Seikagaku (Jap Biochem Soc) 62: 975–975Google Scholar
  18. Kaneda N, Kobayashi K, Ichinose H, Sasaoka T, Ishii A, Kiuchi K, Kurosawa Y, Fujita K, Nagatsu T (1990) Molecular biological approaches to catecholamine neurotransmitters and brain aging. In: Nagatsu T, Hayaishi O (eds) Aging of the brain. Cellular and molecular aspects of brain aging and Alzheimer’s disease. Japan Scientific Press, Tokyo, and Karger, Basel, pp 53–56Google Scholar
  19. Kaneda N, Sasaoka T, Kobayashi K, Kiuchi K, Nagatsu I, Kurosawa Y, Fujita K, Yokoyama M, Nomura T, Katsuki M, Nagatsu T (1991) Tissue-specific and high-level expression of human tyrosine hydroxylase gene in transgenic mice. Neuron 6: 1–12CrossRefGoogle Scholar
  20. Kobayashi K, Kaneda N, Ichinose H, Kishi F, Nakazawa A, Kurosawa Y, Fujita K, Nagatsu T (1987) Isolation of a full length cDNA clone encoding human tyrosine hydroxylase type 3. Nucl Acids Res 15: 6733–6733PubMedCrossRefGoogle Scholar
  21. Kobayashi K, Kaneda N, Ichinose H, Kishi F, Nakazawa A, Kurosawa Y, Fujita K, Nagatsu T (1988a) Structure of the human tyrosine hydroxylase gene: alternative splicing from a single gene accounts for generation of four mRNA types. J Biochem 103: 907–912PubMedGoogle Scholar
  22. Kobayashi K, Kiuchi K, Ishii A, Kaneda N, Kurosawa Y, Fujita K, Nagatsu T (1988b) Expression of four types of human tyrosine hydroxylase in COS cells. FEBS Lett 238: 431–434PubMedCrossRefGoogle Scholar
  23. Kobayashi K, Kurosawa Y, Fujita K, Nagatsu T (1989) Human dopamine β-hydroxylase gene: two mRNA types having different 3′-terminal regions are produced through alternative polyadenylation. Nucl Acids Res 17: 1089–1102PubMedCrossRefGoogle Scholar
  24. Kojima K, Mogi M, Oka K, Nagatsu T (1984) Purification and immunochemical characterization of human adrenal tyrosine hydroxylase. Neurochem Int 6: 475–480PubMedCrossRefGoogle Scholar
  25. Lamouroux A, Vigny N, Facon Bigunet MC, Darmon R, Franck R, Henry J-P, Mallet J (1987) The primary structure of human dopamine β-hydroxylase: insights into the relationship between the soluble and the membrane-bound forms of the enzyme. EMBO J 6: 3931–3937PubMedGoogle Scholar
  26. Le Bourdellès B, Boularand S, Boni C, Horellou P, Dumas S, Grima B, Mallet J (1988) Analyses of the 5′-region of the human tyrosine hydroxylase gene: combinatorial patterns of exon splicing generate multiple regulated tyrosine hydroxylase isoforms. J Neurochem 50: 988–991PubMedCrossRefGoogle Scholar
  27. Lewis EJ, Harrington CA, Chikaraishi DM (1987) Transcriptional regulation of the tyrosine hydroxylase gene by glucocorticoid and cyclic AMP. Proc Natl Acad Sci USA 84: 3550–3554PubMedCrossRefGoogle Scholar
  28. Lovenberg W, Weissbach H, Udenfriend S (1962) Aromatic L-amino acid decarboxylase. J Biol Chem 237: 89–93PubMedGoogle Scholar
  29. Man in’t Veld AJ, Boomsma F, Moleman P, Schalekamp MADH (1987) Congenital dopamine-beta-hydroxylase deficiency. A novel orthostatic syndrome. Lancet i: 183–187Google Scholar
  30. Matuura S, Sugimoto T, Murata S, Sugawara Y, Iwasaki H (1985) Stereochemistry of biopterin cofactor and facile methods for the determination of the stereochemistry of a biologically activate 5,6,7,8-tetrahydropterin. J Biochem 98: 1341–1348Google Scholar
  31. Mogi M, Harada M, Kiuchi K, Kojima K, Kondo T, Narabayashi H, Rausch D, Riederer P, Jellinger K, Nagatsu T (1988) Homospecific activity (activity per enzyme protein) of tyosine hydroxylase increases in parkinsonian brain. J Neural Transm 72: 77–81PubMedCrossRefGoogle Scholar
  32. Mogi M, Kojima K, Nagatsu T (1984) Detection of inactive or less active forms of tyrosine hydroxylase in human brain and adrenals by a sandwich enzyme immunoassay. Anal Biochem 138: 125–132PubMedCrossRefGoogle Scholar
  33. Mogi M, Kojima K, Harada M, Nagatsu T (1986) Purification and immunological properties of tyrosine hydroxylase in human brain. Neurochem Int 8: 423–428PubMedCrossRefGoogle Scholar
  34. Nagatsu T (1977) Dopamine-β-hydroxylase in blood and cerebrospinal fluid. Trends Biochem Sci 2: 217–219CrossRefGoogle Scholar
  35. Nagatsu T, Kato T, Numata (Sudo) Y, Ikuta K, Sano M, Nagatsu I, Kondo Y, Inagaki S, Iizuka R, Hori A, Narabayashi H (1977) Phenylethanolamine N-methyltransferase and other enzymes of catecholamine metabolism in human brain. Clin Chim Acta 75: 221–232Google Scholar
  36. Nagatsu T, Levitt M, Udenfriend S (1964) Tyrosine hydroxylase. The initial step in norepinephrine biosynthesis. J Biol Chem 239: 2910–2917Google Scholar
  37. Nagatsu T, Oka K (1987) Tyrosine 3-monooxygenase from bovine adrenal medulla. In: Kaufman S (ed) Methods in enzymology, vol 142. Academic Press, New York, pp 56–62Google Scholar
  38. Nagatsu T, Yamaguchi T, Kato T, Sugimoto T, Matsuura S, Akino M, Nagatsu I, Iizuka R, Narabayashi H (1981) Biopterin in human brain and unine from controls and parkinsonian patients: application of a new radioimmunoassay. Clin Chim Acta 109: 305–311PubMedCrossRefGoogle Scholar
  39. Nagatsu T, Yamaguchi T, Rahman MK, Trocewicz J, Oka K, Hirata Y, Nagatsu I, Narabayashi H, Kondo K, Iizuka R (1984) Catecholamine-related enzymes and the biopterin cofactor in Parkinson’s disease and related extrapyramidal diseases. In: Hassler RG, Christ JF (eds) Advances in neurology, vol 40. Raven Press, New York, pp 467–473Google Scholar
  40. O’Malley KL, Anhalt MJ, Martin BM, Kelsoe JR, Winfield SL, Ginns EI (1987) Isolation and characterization of the human tyrosine hydroxylase gene: identification of 5′-alternative splice sites responsible for multiple mRNAs. Biochemistry 26: 6910–6914PubMedCrossRefGoogle Scholar
  41. Robertson D, Goldberg MR, Onrot J, Hollister AS, Wiley R, Thompson JR, Robertson RM (1986) Isolated failure of autonomic noradrenergic neurotransmission. N Engl J Med 314: 1494–1497PubMedCrossRefGoogle Scholar
  42. Sasaoka T, Kaneda N, Kurosawa Y, Fujita K, Nagatsu T (1989) Structures of human phenylethanolamine N-methyltransferase gene: existence of two types of mRNA with different transcription initiation sites. Neurochem Int 15: 555–565PubMedCrossRefGoogle Scholar
  43. Sumi C, Ichinose H, Nagatsu T (1990) Characterization of recombinant human aromatic L-amino acid decarloxylase expressed in COS cells. J Neurochem 55: 1075–1078PubMedCrossRefGoogle Scholar
  44. Tank AW, Weiner N (1987) Tyrosine 3-monooxygenase from rat pheochromocytoma. In: Kaufman S (ed) Methods in enzymology, vol 142. Academic Press, New York, pp 71–82Google Scholar
  45. Uchida K, Takamatsu K, Kaneda N, Toya S, Tsukada Y, Kurosawa Y, Fujita K, Nagatsu T, Kohsaka S (1988) Transfection of tyrosine hydroxylase cDNA into C6 cell. Proc Jpn Acad Ser B 64: 290–293CrossRefGoogle Scholar
  46. Uchida K, Takamatsu T, Kaneda N, Toya S, Tsukada Y, Kurosawa Y, Fujita K, Nagatsu T, Kohsaka S (1989) Synthesis of L-3,4-dihydroxyphenylanin by tyrosine hydroxylase cDNA-transfected C6 cells: application for intracerebral grafting. J Neurochem: 53: 728–732PubMedCrossRefGoogle Scholar
  47. Uchida K, Ishii A, Kaneda N, Toya S, Nagatsu T, Kohsaka S (1990a) Tetrahydro- bioptenin-dependent production of L-DOPA in NRK fibroblasts fransfected with tyrosine hydroxylase cDNA: future use for intracerebral grafting. Neurosci Lett 109: 282–286PubMedCrossRefGoogle Scholar
  48. Uchida K, Toya S, Tsukada S, Nagatsu T, Kohsaka S (1990b) Transfection of tyrosine hydroxylase cDNA into non-neuronal cells: application for intracerebral grafting. In: Nagatsu T, Hayaishi O (eds) Aging of the brain. Cellular and molecular aspects of brain aging and Alzheimer’s disease. Japan Scientific Societies Press, Tokyo, and Karger, Basel, pp 79–93Google Scholar
  49. Zigmond RE, Schwarzchild MA, Rittenhouse AR (1989) Acute regulation of tyrosine hydroxylase by nerve activity and by neurotransmitters via phosphorylation. Ann Rev Neurosci 12: 415–416PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1991

Authors and Affiliations

  • T. Nagatsu
    • 1
  • N. Kaneda
    • 1
  • K. Kobayashi
    • 1
  • H. Ichinose
    • 1
  • T. Sasaoka
    • 1
  • A. Ishii
    • 1
  • C. Sumi
    • 1
  • K. Kiuchi
    • 2
  • K. Fujita
    • 3
  • Y. Kurosawa
    • 3
  1. 1.Department of BiochemistryNagoya University School of MedicineShowa-ku, Nagoya 466Japan
  2. 2.Radioisotope Center Medical DivisionNagoya University School of MedicineNagoyaJapan
  3. 3.Institute for Comprehensive Medical Science, School of MedicineFujita Health UniversityToyoake, AichiJapan

Personalised recommendations