Advertisement

Organization and Expression of Genes of Plastid Chromosomes from Non-Angiospermous Land Plants and Green Algae

  • Kanji Ohyama
Part of the Plant Gene Research book series (GENE)

Abstract

Since the presence of DNA was first detected in the chloroplasts of Chlamydomonas reinhardtii (Sager and Ishida, 1963), there has been intensive study of molecular aspects of plastid DNA from various species of green cells. Chloroplasts are photosynthetic organelles that have their own genetic system, separate from the nuclear genome, which also encodes various plastid proteins. The organization of plastid genomes has been reviewed elsewhere (Whitfeld and Bottomley, 1983; Palmer, 1985, 1992). The complete nucleotide sequences of the plastid genomes of a liverwort, Marchantia polymorpha (Ohyama et al., 1986, 1988a–c) (Fig. 1), angiosperms, tobacco (Nicotiana tabacum) (Shinozaki et al., 1986) and rice (Oryza sativa) (Hiratsuka et al., 1989), have been reported, providing new knowledge of plastid genome organization and gene expression. This chapter focuses on the characteristic features of plastid genomes, genes, and gene expression from non-angiospermous land plants and the green alga, C. reinhardtii and Euglena gracilis (Whittier and Sugiura, 1992), Euglena chloroplast DNA was recently reviewed by Hallick and Buetow (1989).

Keywords

Chloroplast Genome tRNA Gene Plastid Genome Ribosomal Protein Gene Zinc Finger Motif 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson S, Bankier AT, Barrell BG, de Bruijn MHL, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290: 457–465PubMedCrossRefGoogle Scholar
  2. Bachmann BJ, Low KB (1980) Linkage map of Eschehchia coli K-12, edition 6. Microbiol Rev 44: 1–56PubMedGoogle Scholar
  3. Bedwell D, Davis G, Gosink M, Post L, Nomura M, Kestler H, Zengel JM, Lindal L (1985) Nucleotide sequence of the alpha ribosomal protein operon of Escherichia coli. Nucleic Acids Res 13: 3891–3903PubMedCrossRefGoogle Scholar
  4. Behn W, Herrmann RG (1977) Circular molecules in the betasatellite DNA of Chlamydomonas reinhardii. Mol Gen Genet 157: 25–30CrossRefGoogle Scholar
  5. Bennoun P (1982) Evidence for a respiratory chain in the chloroplast. Proc Natl Acad Sci USA 79: 4352–4356PubMedCrossRefGoogle Scholar
  6. Bergmann P, Schneider M, Burkard G, Weil JH, Rochaix JD (1985) Transfer RNA gene mapping studies on chloroplast DNA from Chlamydomonas reinhardii. Plant Sci 39: 133–140CrossRefGoogle Scholar
  7. Bognar AL, Osborne C, Shane B (1987) Primary structure of the Escherichia coli folC gene and its folylpolyglutamate synthetase-dihydrofolate synthetase product and regulation of expression by an upstream gene. J Biol Chem 262: 12337–12343PubMedGoogle Scholar
  8. Bonitz SG, Berlani R, Coruzzi G, Li M, Macino G, Nobrega FG, Nobrega MP, Thalenfeld BE, Tzagoloff A (1980a) Codon recognition rules in yeast mitochondria. Proc Natl Acad Sci USA 77: 3167–3170PubMedCrossRefGoogle Scholar
  9. Bonitz SG, Coruzzi G, Thalenfeld BE, Tzagoloff A, Macino G (1980b) Assembly of the mitochondrial membrane system, structure and nucleotide sequence of the gene coding for subunit 1 of yeast cytochrome oxidase. J Biol Chem 255: 11927–11941PubMedGoogle Scholar
  10. Boynton JE, Gillham NW, Harris EH, Hosier JP, Johnson AM, Jones AR, Randolph-Anderson BL, Robertson D, Klein TM, Shark KB, Sanford JC (1988) Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240: 1534–1538PubMedCrossRefGoogle Scholar
  11. Boynton JE, Gillham NW, Newman SM, Harris EH (1992) Organelle genetics and transformations of Chlamydomonas. In: Herrmann RG (ed) Cell organelles. Springer, Wien New York, pp 3–64 [Dennis ES et al (eds) Plant gene research. Basic knowledge and application]CrossRefGoogle Scholar
  12. Buckel SD, Bell AW, Rao JKM, Hermodson MA (1986) An analysis of the structure of the product of the rbsA gene of Escherichia coli K12. J Biol Chem 261: 7659–7662PubMedGoogle Scholar
  13. Cerretti DP, Dean D, Davis GR, Bedwell DM, Nomura M (1983) The spc ribosomal protein operon of Escherichia coli: sequence and cotranscription of the ribosomal protein genes and a protein export gene. Nucleic Acids Res 11: 2599–2616PubMedCrossRefGoogle Scholar
  14. Chiang KS, Sueoka N (1967) Replication of chloroplast DNA in Chlamydomonas reinhardi during vegetative cell cycle: its mode and regulation. Proc Natl Acad Sci USA 57: 1506–1513PubMedCrossRefGoogle Scholar
  15. Chomyn A, Mariottini P, Cleeter MWJ, Ragan CI, Matsuno-Yagi A, Hatefi Y, Doolittle RF, Attardi G (1985) Six unidentified reading frames of human mitochondrial DNA encode components of the respiratory-chain NADH dehydrogenase. Nature 314: 592–597PubMedCrossRefGoogle Scholar
  16. Chomyn A, Cleeter MWJ, Ragan CI, Riley M, Doolittle RF, Attardi G (1986) URF6, last unidentified reading frame of human mtDNA, codes for an NADH dehydrogenase subunit. Science 234: 614–618PubMedCrossRefGoogle Scholar
  17. Choquet Y, Goldschmidt-Clermont M, Girard-Bascou J, Kuck U, Bennoun P, Rochaix JD (1988) Mutant phenotypes support a trans-splicing mechanism for the expression of the tripartite psaA gene in the C. reinhardtii chloroplast. Cell 52: 903–913PubMedCrossRefGoogle Scholar
  18. Copertino DW, Hallick RB (1991) Group II twintron: an intron within an intron in a chloroplast cytochrome b-559 gene. EMBO J 10: 433–442PubMedGoogle Scholar
  19. Cozens AL, Walker JE, Phillips AL, Huttly AK, Gray JC (1986) A sixth subunit of ATP synthase, an F0 component, is encoded in the pea chloroplast genome. EMBO J 5: 217–222PubMedGoogle Scholar
  20. Crick FHC (1966) Codon-anticodon pairing: the wobble hypothesis. J Mol Biol 19: 548–555PubMedCrossRefGoogle Scholar
  21. Crouse EJ, Schmitt JM, Bohnert HJ (1985) Chloroplast and cyanobacterial genomes, genes and RNAs: a compilation. Plant Mol Biol Rep 3: 43–89CrossRefGoogle Scholar
  22. Cushman JC, Christopher DA, Little MC, Hallick RB, Price CA (1988) Organization of the psb E, psb F, orf 38, and orf 42 gene loci on the Euglena gracilis chloroplast genome. Curr Genet 13: 173–180PubMedCrossRefGoogle Scholar
  23. Dalmon J, Loiseaux S, Bazetoux S (1983) Heterogeneity of plastid DNA of two species of brown algae. Plant Sci Lett 29: 243–253CrossRefGoogle Scholar
  24. Dron M, Rahire M, Rochaix JD (1982) Sequence of the chloroplast DNA region of Chlamydomonas reinhardii containing the gene of the large subunit of ribulose bisphos-phate carboxylase and parts of its flanking genes. J Mol Biol 162: 775–793PubMedCrossRefGoogle Scholar
  25. Erickson JM, Rahire M, Rochaix JD (1984) Chlamydomonas reinhardii gene for the 32 000 mol.wt. protein of photosystem II contains four large introns and is located entirely within the chloroplast inverted repeat. EMBO J 3: 2753–2762Google Scholar
  26. Fearnley IM, Runswick MJ, Walker JE (1989) A homologue of the nuclear coded 49 kd subunit of bovine mitochondrial NADH-ubiquinone reductase is coded in chloroplast DNA. EMBO J 8: 665–672PubMedGoogle Scholar
  27. Fournier MJ, Ozeki H (1985) Structure and organization of the transfer ribonucleic acid genes of Escherichia coli K-12. Microbiol Rev 49: 379–397PubMedGoogle Scholar
  28. Fujita Y, Takahashi Y, Kohchi T, Ozeki H, Ohyama K, Matsubara H (1989) Identification of a novel nifH-like (frxC) protein in chloroplasts of the liverwort Marchanda poly-morpha. Plant Mol Biol 13: 551–561PubMedCrossRefGoogle Scholar
  29. Fukuzawa H, Kohchi T, Shirai H, Ohyama K, Umesono K, Inokuchi H, Ozeki H (1986) Coding sequences for chloroplast ribosomal protein S12 from the liverwort, Marchanda polymorpha, are separated far apart on the different DNA strands. FEBS Lett 198: 11–15CrossRefGoogle Scholar
  30. Fukuzawa H, Yoshida T, Kohchi T, Okumura T, Sawano Y, Ohyama K (1987) Splicing of group II introns in mRNAs coding for cytochrome b6 and subunit IV in the liverwort Marchanda polymorpha chloroplast genome. Exon specifying a region coding for two genes with the spacer region. FEBS Lett 220: 61–66CrossRefGoogle Scholar
  31. Fukuzawa H, Kohchi T, Sano T, Shirai H, Umesono K, Inokuchi H, Ozeki H, Ohyama K (1988) Structure and organization of Marchanda polymorpha chloroplast genome: III. Gene organization of the large single copy region from rbcL to trnI(CAU). J Mol Biol 203: 333–351PubMedCrossRefGoogle Scholar
  32. Gilson E, Nikaido H, Hofnung M (1982) Sequence of the ma1 K gene in E. coli K12. Nucleic Acids Res 10: 7449–7458PubMedCrossRefGoogle Scholar
  33. Gingrich JC, Hallick RB (1985) The Euglena gracilis chloroplast ribulose-1,5-bisphosphate carboxylase gene. J Biol Chem 260: 16156–16161PubMedGoogle Scholar
  34. Graf L, Kossel H, Stutz E (1980) Sequencing of 16S–23S spacer in a ribosomal RNA operon of Euglena gracilis chloroplast DNA reveals two tRNA genes. Nature 286: 908–910PubMedCrossRefGoogle Scholar
  35. Gray PW, Hallick RB (1977) Restriction endonuclease map of Euglena gracilis chloroplast DNA. Biochemistry 16: 1665–1671PubMedCrossRefGoogle Scholar
  36. Greenberg BM, Hallick RB (1986) Accurate transcription and processing of 19 Euglena chloroplast tRNAs in a Euglena soluble extract. Plant Mol Biol 6: 89–100CrossRefGoogle Scholar
  37. Hallick RB (1989) Proposal for the naming of chloroplast genes. II. Update to the nomenclature of genes for thylakoid membrane polypeptides. Plant Mol Biol Rep 7: 266–275CrossRefGoogle Scholar
  38. Hallick RB, Buetow DE (1989) Chloroplast DNA. In: Buetow DE (ed) The biology of Euglena, vol 4. Academic Press, London, pp 351–414Google Scholar
  39. Hallick RB, Christopher DA, Copertino DW, Drager RG, Hong L, Nelson KP, Radebaugh C, Stevenson JK, Sleator NJ, Yapiz-Plascencia G (1989) The organization and expression of photosynthetic and non-photosynthetic operons of Euglena gracilis chloroplast DNA. In: Proceedings of VIIIth International Congress on Photosynthesis. Kluwer, Dordrecht, pp 491–498Google Scholar
  40. Hayashida N, Matsubayashi T, Shinozaki K, Sugiura M, Inoue K, Hiyama T (1987) The gene for the 9 kd polypeptide, a possible apoprotein for the iron-sulfur centers A and B of the photosystem I complex, in tobacco chloroplast DNA. Curr Genet 12: 247–250PubMedCrossRefGoogle Scholar
  41. Hearst JE, Alberti M, Doolittle RF (1985) A putative nitrogenase reductase gene found in the nucleotide sequences from the photosynthetic gene cluster of R. capsulata. Cell 40: 219–220PubMedCrossRefGoogle Scholar
  42. Herdman M, Stanier RY (1977) The cyanelle: chloroplast or endosymbiotic prokaryote? FEMS Lett 1: 7–12CrossRefGoogle Scholar
  43. Herrmann RG, Bohnert H-J, Driesel A, Hobom G (1976) The location of rRNA genes on the restriction endonuclease map of the Spinacia oleracea chloroplast DNA. In: Bücher T, Neupert W, Sebald W, Werner S (eds) Genetics and biogenesis of chloroplast and mitochondria. North-Holland, Amsterdam, pp 351–359Google Scholar
  44. Herrmann RG, Palta HK, Kowallik KV (1980) Chloroplast DNA from three archegoniates. Planta 148: 319–327CrossRefGoogle Scholar
  45. Higgins CF, Haag PD, Nikaido K, Ardeshir F, Garcia G, Ames GFL (1982) Complete nucleotide sequence and identification of membrane components of the histidine transport operon of S. typhimuhum. Nature 298: 723–727PubMedCrossRefGoogle Scholar
  46. Higgins CF, Hiles ID, Whalley K, Jamieson DJ (1985) Nucleotide binding by membrane components of bacterial periplasmic binding protein-dependent transport systems. EMBO J 4: 1033–1040PubMedGoogle Scholar
  47. Higgins CF, Hiles ID, Salmond GPC, Gill DR, Downie JA, Evans IJ, Holland IB, Gray L, Buckel SD, Bell AW, Hermodson MA (1986) A family of related ATP-binding subunits coupled to many distinct biological processes in bacteria. Nature 323: 448–450PubMedCrossRefGoogle Scholar
  48. Hiratsuka J, Shimada H, Whittier R, Ishibashi T, Sakamoto M, Mori M, Kondo C, Honji Y, Sun CR, Meng BY, Li YQ, Kanno A, Nishizawa Y, Hirai A, Shinozaki K, Sugiura M (1989) The complete sequence of the rice (Oryza sativa) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol Gen Genet 217: 185–194PubMedCrossRefGoogle Scholar
  49. Høj PB, Svendsen I, Scheller HV, Moller BL (1987) Identification of a chloroplast-encoded 9-kDa polypeptide as a 2[4Fe-4S] protein carrying centers A and B of photosystem I. J Biol Chem 262: 12676–12684PubMedGoogle Scholar
  50. Howe CJ (1985) The endpoints of an inversion in wheat chloroplast DNA are associated with short repeated sequences containing homology to att-lambda. Curr Genet 10: 139–145PubMedCrossRefGoogle Scholar
  51. Howe CJ, Barker RF, Bowman CM, Dyer TA (1988) Common features of three inversions in wheat chloroplast DNA. Curr Genet 13: 343–349PubMedCrossRefGoogle Scholar
  52. Hyman BC, Cramer JH, Rownd RH (1982) Properties of a Saccharomyces cerevisiae mtDNA segment conferring high-frequency yeast transformation. Proc Natl Acad Sci USA 79: 1578–1582PubMedCrossRefGoogle Scholar
  53. Ikeuchi M, Koike H, Inoue Y (1989) N-terminal sequencing of low-molecular-mass components in cyanobacterial photosystem II core complex. Two components correspond to unidentified open reading frames of plant chloroplast DNA. FEBS Lett 253: 178–182PubMedCrossRefGoogle Scholar
  54. Johann S, Hinton SM (1987) Cloning and nucleotide sequence of the ch1 D locus. J Bacteriol 169: 1911–1916PubMedGoogle Scholar
  55. Kohchi T, Ogura Y, Umesono K, Yamada Y, Komano T, Ozeki H, Ohyama K (1988a) Ordered processing and splicing in a polycistronic transcript in liverwort chloroplasts. Curr Genet 14: 147–154PubMedCrossRefGoogle Scholar
  56. Kohchi T, Shirai H, Fukuzawa H, Sano T, Komano T, Umesono K, Inokuchi H, Ozeki H, Ohyama K (1988b) Structure and organization of Marchanda polymorpha chloroplast genome: IV. Inverted repeat and small single copy regions. J Mol Biol 203: 353–372PubMedCrossRefGoogle Scholar
  57. Kohchi T, Umesono K, Ogura Y, Komine Y, Nakahigashi K, Komano T, Yamada Y, Ozeki H, Ohyama K (1988c) A nicked group II intron and trans-splicing in liverwort, Marchantia polymorpha, chloroplasts. Nucleic Acids Res 16: 10025–10036PubMedCrossRefGoogle Scholar
  58. Kohchi T, Yoshida T, Komano T, Ohyama K (1988d) Divergent mRNA transcription in the chloroplast psb B operon. EMBO J 7: 885–891PubMedGoogle Scholar
  59. Koller B, Delius H (1982a) Origin of replication in chloroplast DNA of Euglena gracilis located close to the region of variable size. EMBO J 1: 995–998PubMedGoogle Scholar
  60. Koller B, Delius H (1982b) Electron microscopic analysis of the extra 16SrRNA gene and its neighbourhood in chloroplast DNA from Euglena gracilis strain Z. FEBS Lett 139: 86–92PubMedCrossRefGoogle Scholar
  61. Koller B, Delius H (1984) Intervening sequences in chloroplast genomes. Cell 36: 613–622PubMedCrossRefGoogle Scholar
  62. Kolodner RD, Tewari KK (1975) Chloroplast DNA from higher plants replicates by both the Cairns and the rolling circle mechanism. Nature 256: 708–711PubMedCrossRefGoogle Scholar
  63. Kolodner R, Tewari KK (1979) Inverted repeats in chloroplast DNA from higher plants. Proc Natl Acad Sci USA 76: 41–45PubMedCrossRefGoogle Scholar
  64. Kück U, Choquet Y, Schneider M, Dron M, Bennoun P (1987) Structural and transcription analysis of two homologous genes for the P700 chlorophyll a-apoproteins in Chlamydomonas reinhardii: evidence for in vivo trans-splicing. EMBO J 6: 2185–2195PubMedGoogle Scholar
  65. Lambert DH, Bryant DA, Stirewalt VL, Dubbs JM, Stevens Jr SE, Porter RD (1985) Gene map for the Cyanophora paradoxa cyanelle genome. J Bacteriol 164: 659–664PubMedGoogle Scholar
  66. Lerbs S, Bräutigam E, Mache R (1988) DNA-dependent RNA polymerase of spinach chloroplasts: characterization of alpha-like and sigma-like polypeptides. Mol Gen Genet 211: 459–464CrossRefGoogle Scholar
  67. Little MC, Hallick RB (1988) Chloroplast rpo A, rpo B, and rpo C genes specify at least three components of a chloroplast DNA-dependent RNA polymerase active in tRNA and mRNA transcription. J Biol Chem 263: 14302–14307PubMedGoogle Scholar
  68. Malkin R, Bearden AJ (1978) Membrane-bound iron-sulfur centers in photosynthetic systems. Biochim Biophys Acta 505: 147–181PubMedGoogle Scholar
  69. Malnoe P, Rochaix JD, Chua NH, Spahr PF (1979) Characterization of the gene and messenger RNA of the large subunit of ribulose 1,5-diphosphate carboxylase in Chlamydomonas reinhardii. J Mol Biol 133: 417–434PubMedCrossRefGoogle Scholar
  70. Manning JE, Wolstenholme DR, Ryan RS, Hunter JA, Richards OC (1971) Circular chloroplast DNA from Euglena gracilis. Proc Natl Acad Sci USA 68: 1169–1173PubMedCrossRefGoogle Scholar
  71. Manning JE, Richards OC (1972) Isolation and molecular weight of circular chloroplast DNA from Euglena gracilis. Biochim Biophys Acta 259: 285–296PubMedGoogle Scholar
  72. Markowicz Y, Mache R, Goer SLD (1988) Sequence of the plastid rDNA spacer region of the brown alga Pylaiella littoralis (L.) Kjellm. Evolutionary significance. Plant Mol Biol 10: 465–469Google Scholar
  73. Michel F, Dujon B (1983) Conservation of RNA secondary structures in two intron families including mitochondrial-, chloroplast-and nuclear-encoded members. EMBO J 2: 33–38PubMedGoogle Scholar
  74. Michel F, Umesono K, Ozeki H (1989) Comparative and functional anatomy of group II catalytic introns—a review. Gene 82: 5–30PubMedCrossRefGoogle Scholar
  75. Miller J, McLachlan AD, Klug A (1985) Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J 4: 1609–1614PubMedGoogle Scholar
  76. Minami Y, Wakabayashi S, Wada K, Matsubara H, Kerscher L, Oesterhelt D (1985) Amino acid sequence of a ferredoxin from thermoacidophilic archaebacterium, Sulfolobus acidocaldarius. Presence of an N6-monomethyllysine and phyletic consideration of archaebacteria. J Biochem 97: 745–753PubMedGoogle Scholar
  77. Montandon PE, Stutz E (1983) Nucleotide sequence of a Euglena gracilis chloroplast genome region coding for the elongation factor Tu; evidence for a spliced mRNA. Nucleic Acids Res 11: 5877–5892PubMedCrossRefGoogle Scholar
  78. Oh-oka H, Takahashi Y, Wada K, Matsubara H, Ohyama K, Ozeki H (1987) The 8 kDa polypeptide in photosystem I is a probable candidate of an iron-sulfur center protein coded by the chloroplast gene frxA. FEBS Lett 218: 52–54CrossRefGoogle Scholar
  79. Oh-oka H, Takahashi Y, Matsubara H (1989) Topological considerations of the 9-kDa polypeptide which contains centers A and B, associated with the 1-and 19-kDa polypeptides in the photosystem I complex of spinach. Plant Cell Physiol 30: 869–875Google Scholar
  80. Ohyama K, Yamada Y (1985) Metabolite accumulation by plant genetic engineering. Hakko to Kogyo 43: 814–820Google Scholar
  81. Ohyama K, Yamano Y, Fukuzawa H, Komano T, Yamagishi H, Fujimoto S, Sugiura M (1983) Physical mappings of chloroplast DNA from liverwort Marchanda polymorpha L. cell suspension cultures. Mol Gen Genet 189: 1–9CrossRefGoogle Scholar
  82. Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota S, Inokuchi H, Ozeki H (1986) Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature 322: 572–574CrossRefGoogle Scholar
  83. Ohyama K, Fukuzawa H, Kohchi T, Sano T, Sano S, Shirai H, Umesono K, Shiki T, Takeuchi M, Chang Z, Aota S, Inokuchi H, Ozeki H (1988a) Structure and organization of Marchantia polymorpha chloroplast genome: I. Cloning and gene identification. J Mol Biol 203: 281–298PubMedCrossRefGoogle Scholar
  84. Ohyama K, Kohchi T, Fukuzawa H, Sano T, Umesono K, Ozeki H (1988b) Gene organization and newly identified groups of genes of the chloroplast genome from a liverwort, Marchantia polymorpha. Photosynthesis Res 16: 7–22CrossRefGoogle Scholar
  85. Ohyama K, Kohchi T, Sano T, Yamada Y (1988c) Newly identified groups of genes in chloroplasts. Trends Biochem Sci 13: 19–22PubMedCrossRefGoogle Scholar
  86. Ohyama K, Kohchi T, Ogura Y, Oda K, Yamato K, Sano T, Yamada Y (1990) Gene organization and expression of chloroplast genome from a liverwort, Marchantia polymorpha. Bot Mag (Tokyo) special issue 2: 3–10Google Scholar
  87. Oka A, Sugimoto K, Takanami M, Hirota Y (1980) Replication origin of the Escherichia coli K-12 chromosome: The size and structure of the minimum DNA segment carrying the information for autonomous replication. Mol Gen Genet 178: 9–20PubMedCrossRefGoogle Scholar
  88. Ozeki H, Ohyama K, Inokuchi H, Fukuzawa H, Kohchi T, Sano T, Nakahigashi K, Umesono K (1987) Genetic system of chloroplasts. Cold Spring Harbor Symp Quant Biol 52: 791–804PubMedGoogle Scholar
  89. Ozeki H, Umesono K, Inokuchi H, Kohchi T, Ohyama K (1989) The chloroplast genome of plants: a unique origin. Genome 31: 169–174CrossRefGoogle Scholar
  90. Palmer JD (1983) Chloroplast DNA exists in two orientations. Nature 301: 92–93CrossRefGoogle Scholar
  91. Palmer JD (1985) Comparative organization of chloroplast genomes. Annu Rev Genet 19: 325–354PubMedCrossRefGoogle Scholar
  92. Palmer JD (1992) Comparison of chloroplast and mitochondrial genome evolution in plants. In: Herrmann RG (ed) Cell organelles. Springer, Wien New York, pp 99–133 [Dennis ES et al (eds) Plant gene research. Basic knowledge and application]CrossRefGoogle Scholar
  93. Palmer JD, Stein DB (1986) Conservation of chloroplast genome structure among vascular plants. Curr Genet 10: 823–833CrossRefGoogle Scholar
  94. Palmer JD, Thompson WF (1981) Rearrangements in the chloroplast genomes of mung bean and pea. Proc Natl Acad Sci USA 78: 5533–5537PubMedCrossRefGoogle Scholar
  95. Palmer JD, Thompson WF (1982) Chloroplast DNA rearrangements are more frequent when a large inverted repeat sequence is lost. Cell 29: 537–550PubMedCrossRefGoogle Scholar
  96. Passavant CW, Hallick RB (1985) Location, nucleotide sequence and expression of the proton-translocating subunit gene of the E. gracilis chloroplast ATP synthase. Plant Mol Biol 4: 347–354CrossRefGoogle Scholar
  97. Ravel-Chapuis P, Heizmann P, Nigon V (1982) Electron microscopic localization of the replication origin of Euglena gracilis chloroplast DNA. Nature 300: 78–81CrossRefGoogle Scholar
  98. Rawson JRY, Kushner SR, Vapnek D, Alton NK, Boerma CL (1978) Chloroplast ribosomal RNA genes in Euglena gracilis exist as three clustered tandem repeats. Gene 3: 191–209CrossRefGoogle Scholar
  99. Reznikoff WS, Siegele DA, Cowing DW, Gross CA (1985) The regulation of transcription initiation in bacteria. Annu Rev Genet 19: 355–387PubMedCrossRefGoogle Scholar
  100. Robson R, Woodley P, Jones R (1986) Second gene (ntf H*) coding for a nitrogenase iron protein in Azotobacter chroococcum is adjacent to a gene coding for a ferredoxin-like protein. EMBO J 5: 1159–1163PubMedGoogle Scholar
  101. Rochaix JD (1978) Restriction endonuclease map of the chloroplast DNA of Chlamydomonas reinhardii. J Mol Biol 126: 597–617PubMedCrossRefGoogle Scholar
  102. Rochaix JD (1992) Control of plastid gene expression in Chlamydomonas reinhardii. In: Herrmann RG (ed) Cell organelles. Springer, Wien New York, pp 249–274 [Dennis ES et al (eds) Plant gene research. Basic knowledge and application]CrossRefGoogle Scholar
  103. Rochaix JD, Darlix JL (1982) Composite structure of the chloroplast 23S ribosomal RNA genes of Chlamydomonas reinhardii: evolutionary and functional implications. J Mol Biol 159: 383–395PubMedCrossRefGoogle Scholar
  104. Rochaix JD, Malnoe P (1978) Anatomy of the chloroplast ribosomal DNA of Chlamydomonas reinhardii. Cell 15: 661–670PubMedCrossRefGoogle Scholar
  105. Rochaix JD, van Dillewijn J, Rahire M (1984) Construction and characterization of autonomously replicating plasmids in the green unicellular alga Chlamydomonas reinhardii. Cell 36: 925–931PubMedCrossRefGoogle Scholar
  106. Roux E, Graf L, Stutz E (1983) Nucleotide sequence of a ‘truncated rRNA operon’ of the Euglena gracilis chloroplast genome. Nucleic Acids Res 11: 1957–1968PubMedCrossRefGoogle Scholar
  107. Roux E, Stutz E (1985) The chloroplast genome of Euglena gracilis: the mosaic structure of a DNA segment linking the extra 16S rRNA gene with the rrn operon A. Curr Genet 9: 221–227CrossRefGoogle Scholar
  108. Sager R, Ishida MR (1963) Chloroplast DNA in Chlamydomonas. Proc Natl Acad Sci USA 50: 725–730PubMedCrossRefGoogle Scholar
  109. Saraste M, Gay NJ, Eberle A, Runswick MJ, Walker JE (1981) The atp operon: nucleotide sequence of the genes for the gamma, beta and epsilon subunits of Escherichia coli ATP synthase. Nucleic Acids Res 9: 5287–5296PubMedCrossRefGoogle Scholar
  110. Sasaki Y, Nagano Y, Morioka S, Ishikawa H, Matsuno R (1989) A chloroplast gene encoding a protein with one zinc finger. Nucleic Acids Res 17: 6217–6227PubMedCrossRefGoogle Scholar
  111. Schlunegger B, Stutz E (1984) The Euglena gracilis chloroplast genome: structural features of a DNA region possibly carrying the single origin of DNA replication. Curr Genet 8: 629–634CrossRefGoogle Scholar
  112. Schlunegger B, Fasnacht M, Stutz E, Koller B, Delius H (1983) Analysis of a polymorphic region of the Euglena gracilis chloroplast genome. Biochim Biophys Acta 739: 114–121Google Scholar
  113. Schmidt RJ, Hosler JP, Gillham NW, Boynton JE (1985) Biogenesis and evolution of chloroplast ribosomes: cooperation of nuclear and chloroplast genes. In: Steinback KE, Bonitz S, Arntzen CJ, Bogorad L (eds) Molecular biology of the photosynthetic apparatus. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 417–427Google Scholar
  114. Schneider M, Rochaix JD (1986) Sequence organization of the chloroplast ribosomal spacer of Chlamydomonas reinhardii: uninterrupted tRNAile and tRNAala genes and extensive secondary structure. Plant Mol Biol 6: 265–270CrossRefGoogle Scholar
  115. Shaw JM, Feagin JE, Stuart K, Simpson L (1988) Editing of kinetoplastid mitochondrial mRNAs by uridine addition and deletion generates conserved amino acid sequences and AUG initiation codons. Cell 53: 401–411PubMedCrossRefGoogle Scholar
  116. Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5: 2043–2049PubMedGoogle Scholar
  117. Stein DB, Palmer JD, Thompson WF (1986) Structural evolution and flip-flop recombination of chloroplast DNA in the fern genus Osmunda. Curr Genet 10: 835–841CrossRefGoogle Scholar
  118. Stevenson JK, Drager RG, Copertino DW, Christopher DA, Jenkins KP, Yepiz-Plascencia G, Hallick RB (1991) Intercistronic group III introns in chloroplast polycistronic ribosomal protein operons. Mol Gen Genet 228: 183–192PubMedCrossRefGoogle Scholar
  119. Stiegler GL, Matthews HM, Bingham SE, Hallick RB (1982) The gene for the large subunit of ribulose-1,5-bisphosphate carboxylase in Euglena gracilis chloroplast DNA: Location, apolarity, cloning, and evidence for an intervening sequence. Nucleic Acids Res 10: 3427–3444PubMedCrossRefGoogle Scholar
  120. Stinchcomb DT, Thomas M, Kelly J, Selker E, Davis RW (1980) Eukaryotic DNA segments capable of autonomous replication in yeast. Proc Natl Acad Sci USA 77: 4559–4563PubMedCrossRefGoogle Scholar
  121. Surin BP, Rosenberg H, Cox GB (1985) Phosphate-specific transport system of Escherichia colt nucleotide sequence and gene-polypeptide relationships. J. Bacteriol 161: 189–198PubMedGoogle Scholar
  122. Tanaka A (1984) Studies on DNA synthesis in chloroplasts of Marchantia polymorpha L. PhD Thesis, Kyoto University, Kyoto, JapanGoogle Scholar
  123. Tanaka A, Yamano Y, Fukuzawa H, Ohyama K, Komano T (1984) In vitro DNA synthesis by chloroplasts isolated from Marchantia polymorpha L. cell suspension cultures. Agricult Biol Chem 48: 1239–1244CrossRefGoogle Scholar
  124. Tanaka M, Haniu M, Yasunobu KT, Evans MCW, Rao KK (1974) Amino acid sequence of ferredoxin from a photosynthetic green bacterium, Chlorobium limicola. Biochemistry 13: 2953–2959PubMedCrossRefGoogle Scholar
  125. Umesono K, Inokuchi H, Shiki Y, Takeuchi M, Chang Z, Fukuzawa H, Kochi T, Shirai H, Ohyama K, Ozeki H (1988) Structure and organization of Marchantia polymorpha chloroplast genome: II. Gene organization of the large single copy region from rps′ 12 to atpB. J Mol Biol 203: 299–331PubMedCrossRefGoogle Scholar
  126. Vallet JM, Rahire M, Rochaix JD (1984) Localization and sequence analysis of chloroplast NA sequences of Chlamydomonas reinhardii that promote autonomous replication in yeast. EMBO J 3: 415–421PubMedGoogle Scholar
  127. Wada A, Sako T (1987) Primary structures of and genes for new ribosomal proteins A and B in Escherichia coli. J Biochem 101: 817–820PubMedCrossRefGoogle Scholar
  128. Waddell J, Wang XM, Wu M (1984) Electron microscopic localization of the chloroplast DNA replicative origins in Chlamydomonas reinhardii. Nucleic Acids Res 12: 3843–3856PubMedCrossRefGoogle Scholar
  129. Wang XM, Chang CH, Waddell J, Wu M (1984) Cloning and delimiting one chloroplast DNA replicative origin of Chlamydomonas. Nucleic Acids Res 12: 3857–3872PubMedCrossRefGoogle Scholar
  130. Whitfeld PR, Bottomley W (1983) Organization and structure of chloroplast genes. Annu Rev Plant Physiol 34: 279–310CrossRefGoogle Scholar
  131. Whittier RF, Sugiura M (1992) Plastid chromosomes from vascular plants—genes. In: Herrmann RG (eds) Cell organelles. Springer, Wien New York, pp 164–182 [Dennis ES et al (eds) Plant gene research. Basic knowledge and application]CrossRefGoogle Scholar
  132. Wittmann HG (1983) Architecture of prokaryotic ribosomes. Annu Rev Biochem 52: 35–65PubMedCrossRefGoogle Scholar
  133. Woessner JP, Gillham NW, Boynton JE (1987) Chloroplast genes encoding subunits of the H+-ATPase complex of Chlamydomonas reinhardtii are rearranged compared to higher plants: sequence of the atpE gene and location of the atpF and atpI genes. Plant Mol Biol 8: 151–158CrossRefGoogle Scholar
  134. Yamano Y, Ohyama K, Komano T (1984) Nucleotide sequences of chloroplast 5S ribosomal RNA from cell suspension cultures of the liverworts Marchantia polymorpha and Jungermannia subulata. Nucleic Acids Res 12: 4621–4624PubMedCrossRefGoogle Scholar
  135. Yamano Y, Kochi T, Fukuzawa H, Ohyama K, Komano T (1985) Nucleotide sequences of chloroplast 4.5S ribosomal RNA from a leafy liverwort, Jungermannia subulata, and a thalloid liverwort, Marchantia polymorpha. FEBS Lett 185: 203–207Google Scholar
  136. Zaita N, Torazawa K, Shinozaki K, Sugiura M (1987) Trans splicing in vivo: joining of transcripts from the ‘divided’ gene for ribosomal protein S12 in the chloroplasts of tobacco. FEBS Lett 210: 153–156CrossRefGoogle Scholar
  137. Zakian VA (1981) Origin of replication from Xenopus laevis mitochondrial DNA promotes high-frequency transformation of yeast. Proc Natl Acad Sci USA 78: 3128–3132PubMedCrossRefGoogle Scholar
  138. Zhou DX, Massenet O, Quigley F, Marion MJ, Moneger F, Huber P, Mache R (1988) Characterization of a large inversion in the spinach chloroplast genome relative to Marchantia: a possible transposon-mediated origin. Curr Genet 13: 433–439PubMedCrossRefGoogle Scholar
  139. Zurawski G, Zurawski SM (1985) Structure of the Escherichia coli S10 ribosomal protein operon. Nucleic Acids Res 13: 4521–4526PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1992

Authors and Affiliations

  • Kanji Ohyama
    • 1
  1. 1.Laboratory of Plant Molecular Biology, Department of Agricultural Chemistry, Faculty of AgricultureKyoto UniversityKyoto 606Japan

Personalised recommendations